233 research outputs found

    Lendas, Mitos, Respostas Simbólicas e Santos: Não creiam que a lei penal será a salvação.

    Get PDF
    A proposta é estimular o debate sobre uma tendência punitivista que caminha na contra mão das correntes de política criminal que aspiram por um direito penal do equilíbrio. Uma das provas dessa propensão ao direito penal máximo está na recente inclusão do delito previsto no artigo 218-B do código repressivo (favorecimento da prostituição ou outra forma de exploração sexual de vulnerável) no rol dos crimes hediondos. Este enrijecimento da lei penal não passa de uma resposta demagógica emergencial dos governantes para produzir na sociedade um sentimento de tranquilidade e de político atuante. Assim, o Estado com o apoio da mídia atribui um efeito comunicativo elevado à violência e, após criar um clima de pavor e instabilidade, tipifica novos comportamentos e etiqueta condutas de hedionda. Contudo, nada disso desencoraja nem desestimula a prática delitiva, já que o problema é social e não penal

    IDENTIFICATION OF RISK AREAS USING SPATIAL CLUSTERING TO IMPROVE DENGUE MONITORING IN URBAN ENVIRONMENTS

    Get PDF
    Monitoring the occurrence and spread of epidemics is essential for improving decision-making and developing better public policies in urban environments. Besides temporal aspects, it is also essential to evaluate risk areas. However, only a few works in the literature apply spatial analysis of dengue epidemics in Brazil due mainly to a lack of data availability. Additionally, few methodologies available allow for identifying risk areas considering spatial aspects. The main objective of this work was to identify spatial clusters of risk for dengue cases according to the social vulnerability of each area. This constitutes a powerful tool for effective epidemiological and urban management. This work carries out an ecological study that considered dengue cases in São Carlos-SP, Brazil, in the years 2018, 2019 and 2020. The spatial scan technique was applied to classify the risk areas, considering the relative risk (RR) with a confidence interval of 95\% (CI95\%:) and the São Paulo Social Vulnerability Index (IPVS) to characterize these areas. Three clusters were identified in 2018, with high risk relative (RR=28.86), twenty clusters were identified in 2019, with high risk relative (RR=36.26) and five clusters were identified in 2020, with high risk relative (RR=23.32). The highest risk was located in a region with high vulnerability, and the second was in a region with very low vulnerability. These results provide information that allows the targeting of specific control actions from the early detection of cases in places with greater dengue transmissibility.DOI: 10.36558/rsc.v12i3.792

    Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins

    Get PDF
    The physiological functions of the cellular prion protein, PrPC, as a cell surface pleiotropic receptor are under debate. We report that PrPC interacts with vitronectin but not with fibronectin or collagen. the binding sites mediating this PrPC-vitronectin interaction were mapped to residues 105-119 of PrPC and the residues 307-320 of vitronectin. the two proteins were co-localized in embryonic dorsal root ganglia from wild-type mice. Vitronectin addition to cultured dorsal root ganglia induced axonal growth, which could be mimicked by vitronectin peptide 307-320 and abrogated by anti-PrPC antibodies. Full-length vitronectin, but not the vitronectin peptide 307-320, induced axonal growth of dorsal root neurons from two strains of PrPC-null mice. Functional assays demonstrated that relative to wild-type cells, PrPC-null dorsal root neurons were more responsive to the Arg-Gly-Asp peptide (an integrin-binding site), and exhibited greater alpha v beta 3 activity. Our findings indicate that PrPC plays an important role in axonal growth, and this function may be rescued in PrPC-knockout animals by integrin compensatory mechanisms.Hosp Alemao Oswaldo Cruz, Ludwig Inst Canc Res, São Paulo, BrazilUniv São Paulo, Inst Quim, Dept Bioquim, BR-05508 São Paulo, BrazilHosp Canc, Ctr Tratamento & Pesquisa, São Paulo, BrazilUniv Fed Parana, Dept Patol Basica, BR-80060000 Curitiba, Parana, BrazilUniv Fed Parana, Dept Biol Celular, BR-80060000 Curitiba, Parana, BrazilUniversidade Federal de São Paulo, INFAR, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, INFAR, BR-04023062 São Paulo, BrazilWeb of Scienc

    Nanosegregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures

    Get PDF
    Ionic-liquid (IL) mixtures hold great promise, as they allow liquids with a wide range of properties to be formed by mixing two common components, rather than by synthesizing a large array of pure ILs with different chemical structures. In addition, these mixtures can exhibit a range of properties and structural organization that depend on their composition, which opens up new possibilities for the composition-dependent control of IL properties for particular applications. However, the fundamental properties, structure and dynamics of IL mixtures are currently poorly understood, which limits their more widespread application. This paper presents the first comprehensive investigation into the bulk and surface properties of IL mixtures formed from two commonly encountered ILs: 1-ethyl-3-methylimidazolium and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N] and [C12mim][Tf2N]). Physical property measurements (viscosity, conductivity and density) find that these IL mixtures are not well described by simple mixing laws, suggesting that their structure and dynamics are strongly composition-dependent. Small-angle X-ray and neutron scattering (SAXS and SANS) measurements, alongside molecular dynamics (MD) simulations, show that at low mole fractions of [C12mim][Tf2N], the bulk of the IL is composed of small aggregates of [C12mim]+ ions in a [C2mim][Tf2N] matrix, which is driven by nano-segregation of the long alkyl chains and the polar parts of the IL. As the proportion of [C12mim][Tf2N] in the mixtures increases, the size and number of aggregates increases until the C12 alkyl chains percolate through the system and a bicontinuous network of polar and non-polar domains is formed. Reactive atom scattering-laser-induced fluorescence (RAS-LIF) experiments, also supported by MD simulations, have been used to probe the surface structure of these mixtures. It is found that the vacuum-IL interface is enriched significantly in C12 alkyl chains, even in mixtures low in the long-chain component. These data show, contrary to previous suggestions, that the [C12mim]+ ion is surface active in this binary IL mixture. However, the surface does not become saturated in C12 chains as its proportion in the mixtures increases and remains unsaturated in pure [C12mim][Tf2N]

    Nano-Segregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures

    Get PDF
    Ionic-liquid (IL) mixtures hold great promise, as they allow liquids with a wide range of properties to be formed by mixing two common components, rather than by synthesizing a large array of pure ILs with different chemical structures. In addition, these mixtures can exhibit a range of properties and structural organization that depend on their composition, which opens up new possibilities for the composition-dependent control of IL properties for particular applications. However, the fundamental properties, structure and dynamics of IL mixtures are currently poorly understood, which limits their more widespread application. This paper presents the first comprehensive investigation into the bulk and surface properties of IL mixtures formed from two commonly encountered ILs: 1-ethyl-3-methylimidazolium and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N] and [C12mim][Tf2N]). Physical property measurements (viscosity, conductivity and density) find that these IL mixtures are not well described by simple mixing laws, suggesting that their structure and dynamics are strongly composition-dependent. Small-angle X-ray and neutron scattering (SAXS and SANS) measurements, alongside molecular dynamics (MD) simulations, show that at low mole fractions of [C12mim][Tf2N], the bulk of the IL is composed of small aggregates of [C12mim]+ ions in a [C2mim][Tf2N] matrix, which is driven by nano-segregation of the long alkyl chains and the polar parts of the IL. As the proportion of [C12mim][Tf2N] in the mixtures increases, the size and number of aggregates increases until the C12 alkyl chains percolate through the system and a bicontinuous network of polar and non-polar domains is formed. Reactive atom scattering-laser-induced fluorescence (RAS-LIF) experiments, also supported by MD simulations, have been used to probe the surface structure of these mixtures. It is found that the vacuum-IL interface is enriched significantly in C12 alkyl chains, even in mixtures low in the long-chain component. These data show, contrary to previous suggestions, that the [C12mim]+ ion is surface active in this binary IL mixture. However, the surface does not become saturated in C12 chains as its proportion in the mixtures increases and remains unsaturated in pure [C12mim][Tf2N]
    • …
    corecore