18 research outputs found

    CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L.

    Get PDF
    Crassulacean acid metabolism (CAM) is an intriguing metabolic strategy to maintain photosynthesis under conditions of closed stomata. A shift from C3 photosynthesis to CAM in Mesembryanthemum crystallinum plants was induced by high salinity (0.4 M NaCl). In CAM-performing plants, the quantum efficiencies of photosystem II and I were observed to undergo distinct diurnal fluctuations that were characterized by a strong decline at the onset of the day, midday recovery, and an evening drop. The temporal recovery of both photosystems’ efficiency at midday was associated with a more rapid induction of the electron transport rate at PSII. This recovery of the photosynthetic apparatus at midday was observed to be accompanied by extreme swelling of thylakoids. Despite these fluctuations, a persistent effect of CAM was the acceptor side limitation of PSI during the day, which was accompanied by a strongly decreased level of Rubisco protein. Diurnal changes in the efficiency of photosystems were parallel to corresponding changes in the levels of mRNAs for proteins of PSII and PSI reaction centers and for rbcL, reaching a maximum in CAM plants at midday. This might reflect a high demand for new protein synthesis at this time of the day. Hybridization of run-on transcripts with specific probes for plastid genes of M. crystallinum revealed that the changes in plastidic mRNA levels were regulated at the level of transcription

    CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo

    Get PDF
    BACKGROUND:Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE:We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge

    Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis

    Get PDF
    Inflammation is a necessary albeit insufficient component of tumorigenesis in some cancers. Infectious agents directly implicated in tumorigenesis have been shown to induce inflammation. This process involves both the innate and adaptive components of the immune system which contribute to tumor angiogenesis, tumor tolerance and metastatic properties of neoplasms. Recently, heat-shock proteins have been identified as mediators of this inflammatory process and thus may provide a link between infection-mediated inflammation and subsequent cancer development. In this review, the role of heat-shock proteins in infection-induced inflammation and carcinogenesis will be discussed

    Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers

    Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Implications for Risk Prediction

    Get PDF
    The known breast cancer (BC) susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1,LSP1 and 2q35 confer increased risks of BC for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of three additional SNPs, rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11 and rs10941679 at 5p12 and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased BC risk for BRCA2 carriers (per-allele Hazard Ratio (HR)=1.10, 95%CI:1.03-1.18, p=0.006 and HR=1.09, 95%CI:1.01-1.19, p=0.03, respectively). Neither SNP was associated with BC risk for BRCA1 carriers and rs6504950 was not associated with BC for either BRCA1 or BRCA2 carriers. Of the nine polymorphisms investigated, seven were associated with BC for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, p-values:7×10−11-0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (p=0.0049, 0.03 respectively). All risk associated polymorphisms appear to interact multiplicatively on BC risk for mutation carriers. Based on the joint genotype distribution of the seven risk associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e. between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing BC by age 80, compared with 42-50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences may be sufficient to influence the clinical management of mutation carriers

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF

    Family Support at End of Life

    No full text

    Materials to Prepare Hospice Families for Dying in the Home

    No full text
    Many changes occur in the final hours of life. Family members of those dying at home need to be prepared for these changes, both to understand what is happening and to provide care. The objectives of this study were to describe (1) the written materials used by hospices to prepare families for dying in the home setting and (2) the content of such materials. Questionnaires were sent to 400 randomly selected hospices, of which 170 responded (45.3%) sending their written materials. The most frequently used publications were Gone from My Sight (n = 118 or 69.4%), Final Gifts (n = 44 or 25.9%) and Caregiving (n = 14 or 8.2%). Half (56.5%) of the hospices used other publications and a majority (n = 87 or 51.2%) used multiple publications. Materials were given to the families by nurses (78.2%) or social workers (67.6%). More than 90% of the hospices had materials that addressed the following signs of impending death: decreased fluid intake, decreased food intake, breathing pattern changes, cold extremities, mottling, increased sleeping, changes at the moment of death, audible secretions, urinary output changes, disorientation, incontinence, overall decline and restlessness. Seven signs were addressed less than 30% of the time; pain (28.2%), dyspnea (19.4%), bed-bound state (18.2%), skin changes (18.2%), vital sign changes (17.1%), surge of energy (11.8%) and mandibular breathing (5.9%). Hospice staff should know the content of the materials offered by their agency so they can verbally address the gaps between the written materials and family needs
    corecore