57 research outputs found

    Seasonality and geographical spread of respiratory syncytial virus epidemics in 15 European countries, 2010 to 2016

    Get PDF
    Respiratory syncytial virus (RSV) is considered the major pathogen causing severe lower respiratory tract infections among infants and young children [1]. RSV is the most common cause of hospitalisation for acute lower respiratory tract infection in children younger than 5 years and is estimated to cause between 66,000 and 199,000 deaths worldwide every year [2]. Its significance in causing substantial morbidity and hospitalisation in the first year of life has been affirmed in a recent study and a meta-analysis [3,4]. In England, average annual hospital admission rates are 35.1 per 1,000 children younger than 1 year and 5.31 per 1,000 children aged 1–4 years [5]. In addition to children, RSV causes a substantial disease burden in elderly people and patients with chronic obstructive pulmonary disease [6,7]. RSV causes seasonal epidemics worldwide [8], with one to two epidemics each year [9] following latitudinal gradients in timing, duration, seasonal amplitude and between-year variability [8,9]. In some studies, the seasonal periodicity has been connected to climatic factors [9-11], but a common factor that explains all observed periodicity has not been established. Meteorological conditions such as temperature and high relative humidity have been reported as important predictors of RSV epidemics [9,12]. In the United States (US) and Japan, annual national and regional variation of RSV season onset and end has been reported [13-15]. In the Nordic countries, a major outbreak often alternates with a minor one, with the minor peak in the spring and a major one the following winter [16-19], a phenomenon reported also in Croatia [20], Denmark [21] and Germany [22]. RSV antigenic groups A and B alternate in two-year cycles in Finland, with dominance of the group A viruses in years 1981–82, 1985–86 and 1989–90 and the group B viruses 1983–84 and 1987–88 [17,19], and different genotypes dominate the circulation in consecutive epidemics in Korea [23]. In Spain, no biennial rhythm has been detected but rather a stable annual epidemic with a peak between week 52 and week 1 and circulation 2–8 weeks earlier than influenza viruses [24]. Similarly, in the United Kingdom (UK), one stable epidemic per year is observed [5]. Immunoprophylaxis to prevent RSV infection with a neutralising monoclonal antibody, palivizumab, has been developed for administration to target groups on a monthly basis during the RSV season [25]. However, this drug is limited to high-risk infants, the cost prohibits its use in low- and middle-income countries and the data on effectiveness of the drug in children at high risk other than infants born at gestational age < 33 weeks and in children with chronic lung and heart diseases are limited [26]. The demonstrated high disease burden of RSV infection has created a longstanding interest in RSV vaccines. Approximately 60 RSV vaccine candidates are in preclinical to phase III clinical trials [27,28], with potential target groups including elderly people, pregnant women and infants. A vaccine is expected to enter the market within 5–10 years, presumably by 2025 [29]. As natural infection provides only limited protective immunity owing to evolution of the surface protein G and alternating dominance of antigenic groups A and B [30], most of the vaccine candidates target the fusion protein F, which is cross-reactive across RSV subtypes [27]. To circumvent issues with alternating strains, it has been also suggested to consider inclusion of both RSV A and B in a future RSV vaccine [30]. To plan optimal future vaccination strategies, it is critically important to understand who is affected by RSV and to identify which groups are at risk of more severe RSV infection requiring hospitalisation or intensive care. RSV infection is not notifiable in the European Union (EU) and European Economic Area (EEA), except in Ireland, but many countries have a long tradition of reporting laboratory-confirmed RSV infections at national and international level. The European Influenza Surveillance Network (EISN) collects RSV data for the purpose of interpreting the reports of influenza-like-illness (ILI); these data can also be used to analyse seasonality of RSV [31]. Inter-country comparative analysis of seasonal circulation of RSV across Europe is lacking as most of the published literature focuses on individual countries. Our study describes the seasonality of RSV in 15 countries in the EU/EEA, specifically the start and peak of the season, length of the season and geographical spread, as a baseline description of RSV circulation in Europe. We further aimed to test if the data reported through influenza surveillance systems in use in EU/EEA countries are appropriate to analyse RSV seasonality, including more countries and a more detailed analysis than previous studies.Peer Reviewe

    Birch tar oil is an effective mollusc repellent: field and laboratory experiments using Arianta arbustorum (Gastropoda: Helicidae) and Arion lusitanicus (Gastropoda: Arionidae)

    Get PDF
    Populations of two molluscs, the land snail Arianta arbustorum and the Iberian slug Arion lusitanicus, have increased substantially in many places in the northern Fennoscandia in recent years. This has resulted in considerable aesthetic and economic damage to plants in home gardens and commercial nurseries. Birch tar oil (BTO), is a new biological plant protection product, and was tested against these molluscs. In this study we examined whether 2 types of BTO, used either alone, mixed together, or mixed with VaselineÂź, could be applied as 1) a biological plant protection product for the control of land snails by direct topical spray application, 2) as a repellent against snails when painted on a PerspexÂź fence, and 3) as a repellent against slugs when smeared on pots containing Brassica pekinensis seedlings. Both the fences and the pots with seedlings were placed in each field with a high population of the target organism. When applied as a spray on snails, BTO did not act as a toxic pesticide but rendered the snails inactive for a period of several months. The BTO barriers were effective in repelling both snails and slugs. However, the repellent effect of BTO alone against the molluscs was short-term. Repeated treatments were required to keep the slugs away from the plants and we found that the interval between treatments should not exceed two weeks. A collar fastened around the rim of the pots, combined with the BTO treatment, did not give any additional benefit in hindering slugs from invading the plants. Most noticeably, the BTO+VaselineÂź mixture prevented the land snails from passing over the treated fences for up to several months. The results of these experiments provide evidence that BTO, especially when mixed with VaselineÂź, serves as an excellent long-term repellent against molluscs

    Implementation of deep neural networks to count dopamine neurons in substantia nigra

    Get PDF
    Unbiased estimates of neuron numbers within substantia nigra are crucial for experimental Parkinson's disease models and gene-function studies. Unbiased stereological counting techniques with optical fractionation are successfully implemented, but are extremely laborious and time-consuming. The development of neural networks and deep learning has opened a new way to teach computers to count neurons. Implementation of a programming paradigm enables a computer to learn from the data and development of an automated cell counting method. The advantages of computerized counting are reproducibility, elimination of human error and fast high-capacity analysis. We implemented whole-slide digital imaging and deep convolutional neural networks (CNN) to count substantia nigra dopamine neurons. We compared the results of the developed method against independent manual counting by human observers and validated the CNN algorithm against previously published data in rats and mice, where tyrosine hydroxylase (TH)-immunoreactive neurons were counted using unbiased stereology. The developed CNN algorithm and fully cloud-embedded Aiforia (TM) platform provide robust and fast analysis of dopamine neurons in rat and mouse substantia nigra.Peer reviewe

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    Publisher Copyright: © 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.Peer reviewe

    Forest owners' divestment and investment strategies

    No full text
    Forest owners' optimal harvesting and investment strategies are studied at the forest holding level by including individual forest stands in an asset class portfolio. The forest owner has an option either to clearcut the mature stands and to invest the capital in financial or real asset classes (bank deposits, government bonds, stocks, apartments) or to postpone clearcutting and retain capital in standing trees. Forest inventory data, simulation-optimisation programme Mela and statistics of timber prices are utilised to compute the return series for forest stands. Numerical results show that the optimum level of clearcutting decreases markedly with initial non-forest wealth, particular at low risk-free rates of interest. This suggests that it is rational for non-industrial private forest owners to employ shorter rotations than institutional investors that possess diversified portfolios. Increasing the variety of stand structures by planting different species is not likely to bring substantial benefits due to the correlation between returns from forest stands. The value growth of forest stands can be used to estimate annual returns only for those stands that are soon to be mature. An alternative method for computing the returns for stands at any development phase is proposed based on the net present value of the stand adjusted with fluctuations in forest land prices. This method applies to cases where selling forest stands in the forest land market is considered as an option. Even if selling is not an option, the ratio of maximised net present value to value at immediate harvest can be used as a 'maturity index' for ranking the stands for portfolio optimisation

    MetsÀ sijoituksena ja metsÀnomistaja sijoittajana

    No full text
    vo
    • 

    corecore