289 research outputs found

    Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry

    Full text link
    Biological treatment of hypersaline effluents with high organic matter concentrations is difficult to carry out and it can require a long start-up phase. This is the case of the treatment of fermentation brines from the table olive packaging (FTOP) industries. These effluents are characterized by conductivity values around 90 mS/cm, COD around 15,000 mg/L and total phenols concentration around 1000 mg/L. In this work, FTOP has been treated in two sequencing batch reactors (SBRs) operated in parallel. In each SBR a different start-up strategy has been carried out. In the SBR-2, biomass was previously acclimated to high salinity using simulated wastewater without phenolic compounds, meanwhile in the SBR-1, FTOP was added from the beginning of the start-up. Results indicated more operational problems in the SBR-2 consisting in a higher deflocculation that drove to high turbidity values in the effluent. Besides, at the end of the start-up, the SBR-1 reached higher COD removal efficiencies than SBR-2 (88% and 73%, respectively). In both reactors, an increase in gamma-Proteobacteria in the microbial population was observed for increasing conductivities. In addition, phenols were completely removed in both reactors at the end of the start-up, what implied very low toxicity values in the effluent.The authors of this work thank the financial support of CDTI (Centre for Industrial Technological Development) depending on the Spanish Ministry of Science and Innovation.Ferrer-Polonio, E.; Mendoza Roca, JA.; Iborra Clar, A.; Alonso Molina, JL.; Pastor Alcañiz, L. (2015). Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry. Chemical Engineering Journal. 273:595-602. doi:10.1016/j.cej.2015.03.062S59560227

    Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies

    Full text link
    [EN] The fermentation brines from table olive processing (FTOP) are hypersaline effluents (conductivities higher than 75 mS·cm-1) with high organic matter concentrations (COD around 10 g·L-1), which also include phenolic compounds (between 700 and 1500 mg TY·L-1). In this work, an integrated process for the FTOP reuse as brine in the table olive processing has been evaluated. This integrated process consisted of a biological treatment followed by a membrane system, which included ultrafiltration (UF) plus nanofiltration (NF). The biological treatment was carried out by 6 L laboratory sequencing batch reactor (SBR). UF and NF were performed in laboratory plants for flat membranes of 0.0125 and 0.0072 m2, respectively. Each stream generated during the FTOP treatment (SBR effluent, and UF and NF permeates) were evaluated. The SBR eliminated around 80% of COD and 71% of total phenols concentration. In the final NF permeate the COD concentration was lower than 125 mg·L-1; while the turbidity, colour and phenolic compounds, were completely removed.The authors of this work thank the financial support of CDTI (Centre for Development Technological Industrial) depending on the Spanish Ministry of Science and Innovation.Ferrer-Polonio, E.; Carbonell Alcaina, C.; Mendoza Roca, JA.; Iborra Clar, A.; Alvarez Blanco, S.; Bes-Piá, M.; Pastor Alcañiz, L. (2017). Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies. Journal of Cleaner Production. 142:1377-1386. doi:10.1016/j.jclepro.2016.11.169S1377138614

    Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers

    Get PDF
    <p>Abstract</p> <p>Methods</p> <p>We examined gene expression profiles of tumor cells from 29 untreated patients with lung cancer (10 adenocarcinomas (AC), 10 squamous cell carcinomas (SCC), and 9 small cell lung cancer (SCLC)) in comparison to 5 samples of normal lung tissue (NT). The European and American methodological quality guidelines for microarray experiments were followed, including the stipulated use of laser capture microdissection for separation and purification of the lung cancer tumor cells from surrounding tissue.</p> <p>Results</p> <p>Based on differentially expressed genes, different lung cancer samples could be distinguished from each other and from normal lung tissue using hierarchical clustering. Comparing AC, SCC and SCLC with NT, we found 205, 335 and 404 genes, respectively, that were at least 2-fold differentially expressed (estimated false discovery rate: < 2.6%). Different lung cancer subtypes had distinct molecular phenotypes, which also reflected their biological characteristics. Differentially expressed genes in human lung tumors which may be of relevance in the respective lung cancer subtypes were corroborated by quantitative real-time PCR.</p> <p>Genetic programming (GP) was performed to construct a classifier for distinguishing between AC, SCC, SCLC, and NT. Forty genes, that could be used to correctly classify the tumor or NT samples, have been identified. In addition, all samples from an independent test set of 13 further tumors (AC or SCC) were also correctly classified.</p> <p>Conclusion</p> <p>The data from this research identified potential candidate genes which could be used as the basis for the development of diagnostic tools and lung tumor type-specific targeted therapies.</p

    Overview of biologically digested leachate treatment using adsorption

    Get PDF
    Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit

    Overview of biologically digested leachate treatment using adsorption

    Get PDF
    Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit
    corecore