122 research outputs found

    A bacterial inflammation sensor regulates c-di-GMP signaling, adhesion, and biofilm formation

    Get PDF
    The reactive oxygen species produced during inflammation through the neutrophilic respiratory burst play profound roles in combating bacterial pathogens and regulating the microbiota. Among these, the neutrophilic oxidant bleach, hypochlorous acid (HOCl), is the most prevalent and strongest oxidizer and kills bacteria through non-specific oxidation of proteins, lipids, and DNA. Thus, HOCl can be viewed as a host-specific cue that conveys important information about what bacterial physiology and lifestyle programs may be required for successful colonization. Nevertheless, bacteria that colonize animals face a molecular challenge in how to achieve highly selective detection of HOCl due to its reactive and transient nature and chemical similarity to more benign and non-host-specific oxidants like hydrogen peroxide (H2O2). Here, we report that in response to increasing HOCl levels E. coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We show the molecular mechanism of this activation to be specific oxidation of a conserved cysteine that coordinates the zinc of its regulatory chemoreceptor zinc-binding (CZB) domain, forming a zinc-cysteine redox switch 685-fold more sensitive to oxidation by HOCl over H2O2. Dissection of the signal transduction mechanism through quantum mechanics, molecular dynamics, and biochemical analyses reveal how the cysteine redox state alters the delicate equilibrium of competition for Zn++ between the CZB domain and other zinc binders to relay the presence of HOCl through activating the associated GGDEF domain to catalyze c-di-GMP. We find biofilm formation and HOCl-sensing in vivo to be regulated by the conserved cysteine, and point mutants that mimic oxidized CZB states increase production of the biofilm matrix polymer poly-N-acetylglucosamine and total biofilm. We observe CZB-regulated diguanylate cyclases and chemoreceptors in phyla in which host-associated bacteria are prevalent and are possessed by pathogens that manipulate host inflammation as part of their colonization strategy. A phylogenetic survey of all known CZB sequences shows these domains to be conserved and widespread across diverse phyla, suggesting CZB origin predates the bacterial last universal common ancestor. The ability of bacteria to use CZB protein domains to perceive and thwart the host neutrophilic respiratory burst has implications for understanding the mechanisms of diseases of chronic inflammation and gut dysbiosis

    Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein

    Get PDF
    Accurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes. Most meiotic recombination intermediates that give rise to interhomolog crossovers are embedded within a hallmark chromosomal structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known structural components of the budding yeast SC, the Zip1 protein is unique for its independent role in promoting crossover recombination; Zip1 is specifically required for the large subset of crossovers that also rely on the meiosis-specific MutSgamma complex. Here we report that adjacent regions within Zip1\u27s N terminus encompass its crossover and synapsis functions. We previously showed that deletion of Zip1 residues 21-163 abolishes tripartite SC assembly and prevents robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSgamma crossover recombination. We find the reciprocal phenotype when Zip1 residues 2-9 or 10-14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSgamma crossovers are strongly diminished. Interestingly, Zip1 residues 2-9 or 2-14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSgamma crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15-20 does not detectably prevent Zip3\u27s localization at Zip1 polycomplex and supports some MutSgamma crossing over but prevents normal SC assembly and Ecm11 SUMOylation. Our results highlight distinct N terminal regions that are differentially critical for Zip1\u27s roles in crossing over and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors within close proximity of one another

    Better Outcomes for Older people with Spinal Trouble (BOOST) Trial: a randomised controlled trial of a combined physical and psychological intervention for older adults with neurogenic claudication, a protocol

    Get PDF
    Introduction Neurogenic claudication due to spinal stenosis is common in older adults. The effectiveness of conservative interventions is not known. The aim of the study is to estimate the clinical and cost-effectiveness of a physiotherapist-delivered, combined physical and psychological intervention. Methods and analysis This is a pragmatic, multicentred, randomised controlled trial. Participants are randomised to a combined physical and psychological intervention (Better Outcomes for Older people with Spinal Trouble (BOOST) programme) or best practice advice (control). Community-dwelling adults, 65 years and over, with neurogenic claudication are identified from community and secondary care services. Recruitment is supplemented using a primary care-based cohort. Participants are registered prospectively and randomised in a 2:1 ratio (intervention:control) using a web-based service to ensure allocation concealment. The target sample size is a minimum of 402. The BOOST programme consists of an individual assessment and twelve 90 min classes, including education and discussion underpinned by cognitive behavioural techniques, exercises and walking circuit. During and after the classes, participants undertake home exercises and there are two support telephone calls to promote adherence with the exercises. Best practice advice is delivered in one to three individual sessions with a physiotherapist. The primary outcome is the Oswestry Disability Index at 12 months. Secondary outcomes include the 6 Minute Walk Test, Short Physical Performance Battery, Fear Avoidance Beliefs Questionnaire and Gait Self-Efficacy Scale. Outcomes are measured at 6 and 12 months by researchers who are masked to treatment allocation. The primary statistical analysis will be by ‘intention to treat’. There is a parallel health economic evaluation and qualitative study

    A bacterial inflammation sensor regulates c-di-GMP signaling, adhesion, and biofilm formation

    Get PDF
    Bacteria that colonize animals must overcome, or coexist, with the reactive oxygen species products of inflammation, a front-line defense of innate immunity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a potent antimicrobial that plays a primary role in killing bacteria through nonspecific oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing HOCl levels, Escherichia coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain. Dissection of CZB signal transduction reveals that oxidation of the conserved zinc-binding cysteine controls CZB Zn2+ occupancy, which in turn regulates the catalysis of c-di-GMP by the associated GGDEF domain. We find DgcZ-dependent biofilm formation and HOCl sensing to be regulated in vivo by the conserved zinc-coordinating cysteine. Additionally, point mutants that mimic oxidized CZB states increase total biofilm. A survey of bacterial genomes reveals that many pathogenic bacteria that manipulate host inflammation as part of their colonization strategy possess CZB-regulated diguanylate cyclases and chemoreceptors. Our findings suggest that CZB domains are zinc-sensitive regulators that allow host-associated bacteria to perceive host inflammation through reactivity with HOCl

    Causal relationship between obesity and vitamin d status : Bi-directional mendelian randomization analysis of multiple cohorts

    Get PDF
    Background: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. Methods and Findings: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m2 higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52610227). The BMI allele score was associated both with BMI (p = 6.30610262) and 25(OH)D (20.06% [95% CI 20.10 to 20.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p#8.07610257 for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: 24.2 [95% CI 27.1 to 21.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p$0.57 for both vitamin D scores). Conclusions: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency

    Association of vitamin D status with arterial blood pressure and hypertension risk : a mendelian randomisation study

    Get PDF
    Peer reviewe

    Medial longitudinal arch development of school children : The College of Podiatry Annual Conference 2015: meeting abstracts

    Get PDF
    Background Foot structure is often classified into flat foot, neutral and high arch type based on the variability of the Medial Longitudinal Arch (MLA). To date, the literature provided contrasting evidence on the age when MLA development stabilises in children. The influence of footwear on MLA development is also unknown. Aim This study aims to (i) clarify whether the MLA is still changing in children from age 7 to 9 years old and (ii) explore the relationship between footwear usage and MLA development, using a longitudinal approach. Methods We evaluated the MLA of 111 healthy school children [age = 6.9 (0.3) years] using three parameters [arch index (AI), midfoot peak pressure (PP) and maximum force (MF: % of body weight)] extracted from dynamic foot loading measurements at baseline, 10-month and 22-month follow-up. Information on the type of footwear worn was collected using survey question. Linear mixed modelling was used to test for differences in the MLA over time. Results Insignificant changes in all MLA parameters were observed over time [AI: P = .15; PP: P = .84; MF: P = .91]. When gender was considered, the AI of boys decreased with age [P = .02]. Boys also displayed a flatter MLA than girls at age 6.9 years [AI: mean difference = 0.02 (0.01, 0.04); P = .02]. At baseline, subjects who wore close-toe shoes displayed the lowest MLA overall [AI/PP/MF: P < .05]. Subjects who used slippers when commencing footwear use experienced higher PP than those who wore sandals [mean difference = 31.60 (1.44, 61.75) kPa; post-hoc P = .04]. Discussion and conclusion Our findings suggested that the MLA of children remained stable from 7 to 9 years old, while gender and the type of footwear worn during childhood may influence MLA development. Clinicians may choose to commence therapy when a child presents with painful flexible flat foot at age 7 years, and may discourage younger children from wearing slippers when they commence using footwear
    corecore