87 research outputs found

    First evidence for the Cenomanian-Turonian oceanic anoxic event (OAE2, Bonarelli event) from the Ionian Zone, western continental Greece

    Get PDF
    Integrated biostratigraphic (planktonic foraminifera, calcareous nannofossils), chemostratigraphic (bulk C and O isotopes) and compound-specific organic geochemical studies of a mid-Cretaceous pelagic carbonate—black shale succession of the Ionian Zone (western Greece), provide the first evidence for the Cenomanian–Turonian oceanic anoxic event (OAE2, ‘Bonarelli’ event) in mainland Greece. The event is manifested by the occurrence of a relatively thin (35 cm), yet exceptionally organic carbon-rich (44.5 wt% TOC), carbonate-free black shale, near the Cenomanian–Turonian boundary within the Vigla limestone formation (Berriasian–Turonian). Compared to the ‘Bonarelli’ black-shale interval from the type locality of OAE2 in Marche–Umbria, Italy, this black shale exhibits greatly reduced stratigraphic thickness, coupled with a considerable relative enrichment in TOC. Isotopically, enriched δ[superscript 13]C values for both bulk organic matter (−22.2‰) and specific organic compounds are up to 5‰ higher than those of underlying organic-rich strata of the Aptian-lower Albian Vigla Shale member, and thus compare very well with similar values of Cenomanian–Turonian black shale occurrences elsewhere. The relative predominance of bacterial hopanoids in the saturated, apolar lipid fraction of the OAE2 black shale of the Ionian Zone supports recent findings suggesting the abundance of N[subscript 2]-fixing cyanobacteria in Cretaceous oceans during the Cenomanian–Turonian and early Aptian oceanic anoxic events

    Remarks on the Messinian evaporites of Zakynthos Island (Ionian Sea, Eastern Mediterranean)

    Get PDF
    Detailed mapping of the Neogene deposits on Zakynthos Island shows that the Messinian primary evaporite basins, formed over Ionian basement, are delimited by the westernmost outcrop of the Triassic evaporitic diapirs, located west of the Kalamaki-Argasi Messinian gypsum unit. The post-Miocene external Ionian thrust is emplaced west of the Triassic diapirs. Planktonic foraminifera biostratigraphy indicates that primary evaporite accumulation took place probably during the first stage of the Messinian salinity crisis (5.96-5.60 Ma), in shallower parts of a foreland basin, formed over the Pre-Apulian and the Ionian zone basement. Establishment of these depositional environments, before the Ionian thrust emplacement, was probably due to the particularities of the foreland basin, which extended from the external Ionian to the internal Pre-Apulian zone. Field observations, borehole data and an onshore seismic profile show that the Neogene sediments over the Pre-Apulian basement correspond to the foredeep through forebulge domain of the foreland basin, as it is documented from their spatial thickness distribution. In contrast, the Neogene sediments over the Ionian basement correspond to the wedge top of the foreland basin, which was less subsiding, as it is deduced by their reduced thickness. This lower subsidence rate was the result of the concurrent diapiric movements of the Ionian Triassic evaporites. In Agios Sostis area, located over Pre-Apulian basement, the Neogene sequence is intercalated by decametre-thick resedimented blocks consisting of shallow water selenite. To the southeast, this mass-wasting Messinian gypsum passes to mainly gypsum turbidite. In Kalamaki-Argasi area, located over Ionian basement, the shallow water environment led to the deposition of the observed primary gypsum. Erosion of the primary gypsum of both forebulge and wedge top supplied the foreland basin’s depocenter with gypsum turbidites. Η λεπτομερής χαρτογράφηση των Νεογενών αποθέσεων της Ζακύνθου δείχνει ότι οι λεκάνες πρωτογενούς Μεσσήνιας εβαποριτικής απόθεσης, που σχηματίστηκαν πάνω σε Ιόνιο υπόβαθρο, οριοθετούνται από τη δυτικότερη εμφάνιση των Τριαδικών εβαποριτικών διάπειρων (δυτικά της Μεσσήνιας ενότητας γύψου Καλαμάκι-Αργάσι). Η μετα-Μειοκαινική εξωτερική Ιόνια επώθηση τοποθετείται δυτικά αυτών των Τριαδικών διάπειρων. Βιοστρωματογραφική ανάλυση των συναθροίσεων πλαγκτονικών τρηματοφόρων στα Νεογενή ιζήματα δείχνει ότι η συσσώρευση πρωτογενούς εβαπορίτη έλαβε χώρα πιθανά κατά το πρώτο στάδιο της κρίσης αλμυρότητας του Μεσσηνίου (5.96-5.60 Εκατ.χρ.), στα αβαθέστερα τμήματα της λεκάνης προχώρας, η οποία σχηματίστηκε πάνω στο Προ-Απούλιο και Ιόνιο αλπικό υπόβαθρο. Ο σχηματισμός των περιβαλλόντων ιζηματογένεσης, πριν από την Ιόνια επώθηση, πιθανά οφείλεται στις ιδιαιτερότητες της λεκάνης προχώρας, η οποία εκείνο το διάστημα εκτείνονταν από την εξωτερική Ιόνια ως την εσωτερική Προ-Απούλια ζώνη. Νέα δεδομένα υπαίθρου, σε συνδυασμό με τη βιοστρωματογραφία, τα στοιχεία γεωτρήσεων και μία διαθέσιμη σεισμική τομή δείχνουν ότι τα Νεογενή ιζήματα πάνω στο Προ-Απούλιο υπόβαθρο αντιστοιχούν στον τμήμα της λεκάνης προχώρας, από το προβύθισμα (foredeep) ως την πρόσθια ανύψωση (forebulge), όπως αυτό διαπιστώνεται από την χωρική κατανομή του πάχους τους. Αντίθετα, τα Νεογενή ιζήματα πάνω στο Ιόνιο υπόβαθρο αντιστοιχούν στο τμήμα της λεκάνης προχώρας που βρίσκεται πάνω στο μετωπικό πρίσμα της ορογένεσης (wedge top), το οποίο βυθίζονταν λιγότερο όπως συνάγεται από το ελαττωμένο πάχος των ιζημάτων. Ο μικρότερος ρυθμός βύθισης οφείλεται στις διαπειρικές κινήσεις των Τριαδικών εβαποριτών. Στη Νεογενή ακολουθία, που βρίσκεται πάνω σε Προ-Απούλιο υπόβαθρο (περιοχή Άγιος Σώστης), παρεμβάλλονται επανιζηματοποιημένα μπλοκ δεκαμετρικού πάχους αποτελούμενα από σεληνίτη μικρού βάθους απόθεσης. Προς νότο, αυτή η βαρυτικά μεταφερόμενη μάζα της Μεσσήνιας γύψου μεταπίπτει κυρίως σε τουρβιδιτική γύψο. Στην περιοχή Καλαμάκι-Αργάσι που βρίσκεται πάνω σε Ιόνιο υπόβαθρο, το αβαθές περιβάλλον οδήγησε στην απόθεση της παρατηρούμενης πρωτογενούς γύψου. Η διάβρωση της πρωτογενούς γύψου τόσο της πρόσθιας ανύψωσης όσο και του μετωπικού πρίσματος επώθησης τροφοδότησαν το προβύθισμα της λεκάνης προχώρας με τουρβιδίτες γύψου

    A walk in the PARC:developing and implementing 21st century chemical risk assessment in Europe

    Get PDF
    Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program

    A review of exposure assessment methods for epidemiological studies of health effects related to industrially contaminated sites

    Get PDF
    BACKGROUND: this paper is based upon work from COST Action ICSHNet. Health risks related to living close to industrially contaminated sites (ICSs) are a public concern. Toxicology-based risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies which investigate the relationships between exposure and health directly in the affected population have contributed important evidence. Limitations in exposure assessment have substantially contributed to uncertainty about associations found in epidemiological studies. OBJECTIVES: to examine exposure assessment methods that have been used in epidemiological studies on ICSs and to provide recommendations for improved exposure assessment in epidemiological studies by comparing exposure assessment methods in epidemiological studies and risk assessments. METHODS: after defining the multi-media framework of exposure related to ICSs, we discussed selected multi-media models applied in Europe. We provided an overview of exposure assessment in 54 epidemiological studies from a systematic review of hazardous waste sites; a systematic review of 41 epidemiological studies on incinerators and 52 additional studies on ICSs and health identified for this review. RESULTS: we identified 10 multi-media models used in Europe primarily for risk assessment. Recent models incorporated estimation of internal biomarker levels. Predictions of the models differ particularly for the routes ‘indoor air inhalation’ and ‘vegetable consumption’. Virtually all of the 54 hazardous waste studies used proximity indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). One study used human biomonitoring. In virtually all epidemiological studies, actual land use was ignored. In the 52 additional studies on contaminated sites, proximity indicators were applied in 39 studies, air pollution dispersion modelling in 6 studies, and human biomonitoring in 9 studies. Exposure assessment in epidemiological studies on incinerators included indicators (presence of source in municipality and distance to the incinerator) and air dispersion modelling. Environmental multi-media modelling methods were not applied in any of the three groups of studies. CONCLUSIONS: recommendations for refined exposure assessment in epidemiological studies included the use of more sophisticated exposure metrics instead of simple proximity indicators where feasible, as distance from a source results in misclassification of exposure as it ignores key determinants of environmental fate and transport, source characteristics, land use, and human consumption behaviour. More validation studies using personal exposure or human biomonitoring are needed to assess misclassification of exposure. Exposure assessment should take more advantage of the detailed multi-media exposure assessment procedures developed for risk assessment. The use of indicators can be substantially improved by linking definition of zones of exposure to existing knowledge of extent of dispersion. Studies should incorporate more often land use and individual behaviour

    Harmonization of human biomonitoring studies in Europe: characteristics of the HBM4EU-aligned studies participants

    Get PDF
    Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL((R)) DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll((R)) DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    Funding Information: Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the “Safe and Efficient Chemistry by Design (SafeChem)” project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program. Publisher Copyright: Copyright © 2023 Zare Jeddi, Galea, Viegas, Fantke, Louro, Theunis, Govarts, Denys, Fillol, Rambaud, Kolossa-Gehring, Santonen, van der Voet, Ghosh, Costa, Teixeira, Verhagen, Duca, Van Nieuwenhuyse, Jones, Sams, Sepai, Tranfo, Bakker, Palmen, van Klaveren, Scheepers, Paini, Canova, von Goetz, Katsonouri, Karakitsios, Sarigiannis, Bessems, Machera, Harrad and Hopf.The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the ‘Europe Regional Chapter of the International Society of Exposure Science’ (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.publishersversionpublishe

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program.info:eu-repo/semantics/publishedVersio

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Sigma (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures
    corecore