967 research outputs found

    The prompt optical/near-infrared flare of GRB 050904: the most luminous transient ever detected

    Get PDF
    With a redshift of z=6.295, GRB 050904 is the most distant gamma-ray burst ever discovered. It was an energetic event at all wavelengths and the afterglow was observed in detail in the near-infrared bands. We gathered all available optical and NIR afterglow photometry of this GRB to construct a composite NIR light curve spanning several decades in time and flux density. Transforming the NIR light curve into the optical, we find that the afterglow of GRB 050904 was more luminous at early times than any other GRB afterglow in the pre-\emph{Swift} era, making it at these wavelengths the most luminous transient ever detected. Given the intrinsic properties of GRB 050904 and its afterglow, we discuss if this burst is markedly different from other GRBs at lower redshifts.Comment: The Astronomical Journal, in press; revised version, including the comments of the referee (one figure added, text restructured, all conclusions unchanged), 7 pages, 3 figure

    GRB 130427A Afterglow: A Test for GRB Models

    Get PDF
    Gamma-ray Burst 130427A had the largest fluence for almost 30 years. With an isotropic energy output of 8.5×1053 erg and redshift of 0.34, it combined a very high energy release with a relative proximity to Earth in an unprecedented fashion. Sensitive X-ray facilities such as {\it XMM-Newton} and {\it Chandra} detected the afterglow of this event for a record-breaking baseline of 90 Ms. We show the X-ray light curve of GRB 130427A of this event over such an interval. The light curve shows an unbroken power law decay with a slope of α=1.31 over more than three decades in time. In this presentation, we investigate the consequences of this result for the scenarios proposed to interpret GRB 130427A and the implications in the context of the forward shock model (jet opening angle, energetics, surrounding medium). We also remark the chance of extending GRB afterglow observations for several hundreds of Ms with {\it Athena}

    Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators

    Full text link
    We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator-oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz Invariance in the frame-work of the photon sector of the Standard Model Extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured κ~eZZ\tilde{\kappa}_{e-}^{ZZ} component of 2.1(5.7)×10142.1(5.7)\times10^{-14}, and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of 0.9(2.0)×1010-0.9(2.0)\times 10^{-10} on the isotropy parameter, PMM=δβ+1/2P_{MM}=\delta - \beta + {1/2} is set, which is more than a factor of 7 improvement. More detailed description of the experiment and calculations can be found in: hep-ph/0506200Comment: Final published version, 4 pages, references adde

    Optical Classification of Gamma-Ray Bursts in the Swift Era

    Full text link
    We propose a new method for the classification of optically dark gamma-ray bursts (GRBs), based on the X-ray and optical-to-X-ray spectral indices of GRB afterglows, and utilizing the spectral capabilities of Swift. This method depends less on model assumptions than previous methods, and can be used as a quick diagnostic tool to identify optically sub-luminous bursts. With this method we can also find GRBs that are extremely bright at optical wavelengths. We show that the previously suggested correlation between the optical darkness and the X-ray/gamma-ray brightness is merely an observational selection effect.Comment: 6 pages, 3 figures; accepted for publication in Ap

    The Stellar Ages and Masses of Short GRB Host Galaxies: Investigating the Progenitor Delay Time Distribution and the Role of Mass and Star Formation in the Short GRB Rate

    Full text link
    [Abridged] We present optical and NIR observations of 19 short GRB host galaxies, aimed at measuring their stellar masses and population ages. The goals of this study are to evaluate whether short GRBs track the stellar mass distribution of galaxies, to investigate the progenitor delay time distribution, and to explore any connection between long and short GRB progenitors. Using single stellar population models we infer masses of log(M/M_sun)=8.8-11.6 and population ages of tau=0.03-4.4 Gyr. We further infer maximal masses of log(M/M_sun)=9.7-11.9 by assuming stellar population ages equal to the age of the universe at each host's redshift. Comparing the distribution of stellar masses to the general galaxy mass function we find that short GRBs track the cosmic stellar mass distribution only if the late-type hosts generally have maximal masses. However, there is an apparent dearth of early-type hosts compared to the equal contribution of early- and late-type galaxies to the cosmic stellar mass budget. These results suggest that stellar mass may not be the sole parameter controlling the short GRB rate, and raise the possibility of a two-component model with both mass and star formation playing a role. If short GRBs in late-type galaxies indeed track the star formation activity, the resulting typical delay time is ~0.2 Gyr, while those in early-type hosts have a typical delay of ~3 Gyr. Using the same stellar population models we fit the data for 22 long GRB hosts and find that they have lower masses and younger population ages, with =9.1 and =0.06 Gyr, respectively; their maximal masses are similarly lower, =9.6. Most importantly, the two host populations remain distinct even if we consider only the star-forming hosts of short GRBs, supporting our previous findings that the progenitors of long GRBs and short GRBs in late-type galaxies are distinct.Comment: Submitted to ApJ; 20 pages, 3 tables, 8 figure

    Signatures of Extragalactic Dust in pre-Swift GRB Afterglows

    Full text link
    We present the results of a systematic analysis of gamma-ray burst afterglow spectral energy distributions (SEDs) in the optical/near-infrared bands. Our input list includes the entire world sample of afterglows observed in the pre-Swift era by the end of 2004 that have sufficient publicly available data. We apply various dust extinction models to fit the observed SEDs (Milky Way, Large Magellanic Cloud and Small Magellanic Cloud) and derive the corresponding intrinsic extinction in the GRB host galaxies and the intrinsic spectral slopes of the afterglows. We then use these results to explore the parameter space of the power-law index of the electron distribution function and to derive the absolute magnitudes of the unextinguished afterglows.Comment: Submitted to ApJ 25 May 2005, accepted for publication 16 December 2005, updated 22 December 2005. 50 Pages, 12 Figures, 5 Tables. Figures 1a to 1af (30 subfigures) merged into three subfigures with downgraded resolution. Figures 7 and 8 severly downsampled in resolutio

    Super-solar metallicity at the position of the ultra-long GRB130925A

    Get PDF
    Over the last decade there has been immense progress in the follow-up of short and long GRBs, resulting in a significant rise in the detection rate of X-ray and optical afterglows, in the determination of GRB redshifts, and of the identification of the underlying host galaxies. Nevertheless, our theoretical understanding on the progenitors and central engines powering these vast explosions is lagging behind, and a newly identified class of `ultra-long' GRBs has fuelled speculation on the existence of a new channel of GRB formation. In this paper we present high signal-to-noise X-shooter observations of the host galaxy of GRB130925A, which is the fourth unambiguously identified ultra-long GRB, with prompt gamma-ray emission detected for ~20ks. The GRB line of sight was close to the host galaxy nucleus, and our spectroscopic observations cover both this region along the bulge/disk of the galaxy, in addition to a bright star-forming region within the outskirts of the galaxy. From our broad wavelength coverage we obtain accurate metallicity and dust-extinction measurements at both the galaxy nucleus, and an outer star-forming region, and measure a super-solar metallicity at both locations, placing this galaxy within the 10-20% most metal-rich GRB host galaxies. Such a high metal enrichment has implications on the progenitor models of both long and ultra-long GRBs, although the edge-on orientation of the host galaxy does not allow us to rule out a large metallicity variation along our line of sight. The spatially resolved spectroscopic data presented in this paper offer important insight into variations in the metal and dust abundance within GRB host galaxies. They also illustrate the need for IFU observations on a larger sample of GRB host galaxies at varies metallicities to provide a more quantitative view on the relation between the GRB circumburst and the galaxy-whole properties.Comment: 9 pages, 3 figures, A&A in press, matches published versio

    BL Lacertae objects beyond redshift 1.3 - UV-to-NIR photometry and photometric redshift for Fermi/LAT blazars

    Get PDF
    Observations of the gamma-ray sky with Fermi led to significant advances towards understanding blazars, the most extreme class of Active Galactic Nuclei. A large fraction of the population detected by Fermi is formed by BL Lacertae (BL Lac) objects, whose sample has always suffered from a severe redshift incompleteness due to the quasi-featureless optical spectra. Our goal is to provide a significant increase of the number of confirmed high-redshift BL Lac objects contained in the 2 LAC Fermi/LAT catalog. For 103 Fermi/LAT blazars, photometric redshifts using spectral energy distribution fitting have been obtained. The photometry includes 13 broad-band filters from the far ultraviolet to the near-IR observed with Swift/UVOT and the multi-channel imager GROND at the MPG/ESO 2.2m telescope. Data have been taken quasi-simultaneously and the remaining source-intrinsic variability has been corrected for. We release the UV-to-near-IR 13-band photometry for all 103 sources and provide redshift constraints for 75 sources without previously known redshift. Out of those, eight have reliable photometric redshifts at z>1.3, while for the other 67 sources we provide upper limits. Six of the former eight are BL Lac objects, which quadruples the sample of confirmed high-redshift BL Lac. This includes three sources with redshifts higher than the previous record for BL Lac, including CRATES J0402-2615 with the best-fit solution at z~1.9.Comment: Uploaded correct Fig 4. Changed counterpart name for 2FGLJ0537.7-5716 from PKS 0541-834 (different source) to SUMSS J053748-57182

    GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    Get PDF
    We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 as well as the properties of its host galaxy with high-resolution echelle as well as near-infrared spectroscopy. Observations were taken by the 8.2m Very Large Telescope with the Ultraviolet and Visual Echelle spectrograph (UVES) and the Infrared Spectrometer And Array Camera (ISAAC) between 10 and 14 hours after the onset of the event. We report the first detection of emission lines from a GRB host galaxy in the near-infrared, detecting H-alpha and the [O III] doublet. These allow an independent measurement of the systemic redshift (z = 2.3304 +/- 0.0005) which is not contaminated by absorption as the Ly-alpha line is, and the deduction of properties of the host galaxy. From the visual echelle spectroscopy, we find several absorption line groups spanning a range of about 3,000 km/s in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 km/s and narrow lines with velocity widths of only 20 km/s. By analogy with QSO absorption line studies, the relative velocities,widths, and degrees of ionization of the lines ("line-locking", "ionization--velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf--Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of about 40 solar masses per year.Comment: 11 pages, 5 figures. Accepted for publication in Astronomy and Astrophysics
    corecore