22 research outputs found

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Comprendre et utiliser l'estimation de la stabilité du carbone organique du sol par l'analyse thermique Rock-EvalŸ

    No full text
    Soils store twice the amount of carbon that is found in atmosphere and vegetation combined. They act as a buffer between solid earth and atmosphere and exercise a major control on the atmospheric concentration of CO2 through the release or sink of greenhouse gases. Organic carbon in soils in the form of organic matter is essential to soil health and fertility, to nutrient availability and water quality. The performance of the most valuable tool at our disposal for understanding and predicting the evolution of this reservoir, soil organic carbon (SOC) dynamics models, is currently limited by a missing key: the ability to estimate the proportion of SOC that will remain unchanged over projection-relevant timescales. This important amount of carbon present in soils for centuries or millennia, and therefore considered “stable”, can vary greatly from one location to another. The goal of my thesis was to explore a new approach based on thermal analysis and machine learning, to characterise SOC, estimate the proportion of “stable” carbon in soil samples, and use this information to improve the accuracy of SOC dynamics models. In a second step, I focused on the thermal analysis technique in the heart of this approach to understand better the important information it offers, based on model laboratory experiments. Finally, the main results of my thesis consist of a complete and validated operational approach improving the accuracy of SOC models with a clear and significant value for “climate-smart” soil management, while the experimental part offers new insights into the working principle, limitations and possibilities of the thermal analysis technique at the heart of this approach.A la croisĂ©e de la terre solide et de l'atmosphĂšre, les sols forment le plus grand rĂ©servoir terrestre de carbone organique, contenant deux fois plus de carbone que l'atmosphĂšre et la vĂ©gĂ©tation rĂ©unies, et constituant un contrĂŽle majeur sur le flux des gaz Ă  effet de serre. En outre, le carbone organique des sols (COS) est essentiel pour leur santĂ© et fertilitĂ©, ainsi que pour la qualitĂ© de l'eau. La prĂ©cision de l'outil le plus prĂ©cieux dont nous disposons pour prĂ©dire l'Ă©volution de ce rĂ©servoir, les modĂšles de dynamique du COS, est limitĂ©e par notre capacitĂ© Ă  estimer la proportion du COS qui persistera sur le long terme. Cette quantitĂ© importante de carbone prĂ©sente dans les sols depuis des siĂšcles ou des millĂ©naires, considĂ©rĂ©e comme « stable », peut varier fortement d'un endroit Ă  l'autre. L'ambition de ma thĂšse Ă©tait d’explorer une nouvelle approche basĂ©e sur l'analyse thermique et l’apprentissage automatique, pour caractĂ©riser le COS, estimer la proportion du carbone « stable » dans les Ă©chantillons de sol et ensuite utiliser cette nouvelle information pour amĂ©liorer la prĂ©cision des modĂšles de dynamique du COS. Dans un deuxiĂšme temps, je me suis concentrĂ©e sur la technique de l'analyse thermique pour comprendre mieux les informations qu'elle offre, Ă  la base des expĂ©riences modĂšles en laboratoire. Enfin, les rĂ©sultats principaux de ma thĂšse consistent en une approche opĂ©rationnelle amĂ©liorant la prĂ©cision des modĂšles du COS avec une valeur claire et significative pour une gestion « intelligente » des sols et, en des nouveaux aperçus sur le principe de fonctionnement, les limites et les possibilitĂ©s de la technique d'analyse thermique au cƓur de cette approche

    Comprendre et utiliser l'estimation de la stabilité du carbone organique du sol par l'analyse thermique Rock-EvalŸ

    No full text
    A la croisĂ©e de la terre solide et de l'atmosphĂšre, les sols forment le plus grand rĂ©servoir terrestre de carbone organique, contenant deux fois plus de carbone que l'atmosphĂšre et la vĂ©gĂ©tation rĂ©unies, et constituant un contrĂŽle majeur sur le flux des gaz Ă  effet de serre. En outre, le carbone organique des sols (COS) est essentiel pour leur santĂ© et fertilitĂ©, ainsi que pour la qualitĂ© de l'eau. La prĂ©cision de l'outil le plus prĂ©cieux dont nous disposons pour prĂ©dire l'Ă©volution de ce rĂ©servoir, les modĂšles de dynamique du COS, est limitĂ©e par notre capacitĂ© Ă  estimer la proportion du COS qui persistera sur le long terme. Cette quantitĂ© importante de carbone prĂ©sente dans les sols depuis des siĂšcles ou des millĂ©naires, considĂ©rĂ©e comme « stable », peut varier fortement d'un endroit Ă  l'autre. L'ambition de ma thĂšse Ă©tait d’explorer une nouvelle approche basĂ©e sur l'analyse thermique et l’apprentissage automatique, pour caractĂ©riser le COS, estimer la proportion du carbone « stable » dans les Ă©chantillons de sol et ensuite utiliser cette nouvelle information pour amĂ©liorer la prĂ©cision des modĂšles de dynamique du COS. Dans un deuxiĂšme temps, je me suis concentrĂ©e sur la technique de l'analyse thermique pour comprendre mieux les informations qu'elle offre, Ă  la base des expĂ©riences modĂšles en laboratoire. Enfin, les rĂ©sultats principaux de ma thĂšse consistent en une approche opĂ©rationnelle amĂ©liorant la prĂ©cision des modĂšles du COS avec une valeur claire et significative pour une gestion « intelligente » des sols et, en des nouveaux aperçus sur le principe de fonctionnement, les limites et les possibilitĂ©s de la technique d'analyse thermique au cƓur de cette approche.Soils store twice the amount of carbon that is found in atmosphere and vegetation combined. They act as a buffer between solid earth and atmosphere and exercise a major control on the atmospheric concentration of CO2 through the release or sink of greenhouse gases. Organic carbon in soils in the form of organic matter is essential to soil health and fertility, to nutrient availability and water quality. The performance of the most valuable tool at our disposal for understanding and predicting the evolution of this reservoir, soil organic carbon (SOC) dynamics models, is currently limited by a missing key: the ability to estimate the proportion of SOC that will remain unchanged over projection-relevant timescales. This important amount of carbon present in soils for centuries or millennia, and therefore considered “stable”, can vary greatly from one location to another. The goal of my thesis was to explore a new approach based on thermal analysis and machine learning, to characterise SOC, estimate the proportion of “stable” carbon in soil samples, and use this information to improve the accuracy of SOC dynamics models. In a second step, I focused on the thermal analysis technique in the heart of this approach to understand better the important information it offers, based on model laboratory experiments. Finally, the main results of my thesis consist of a complete and validated operational approach improving the accuracy of SOC models with a clear and significant value for “climate-smart” soil management, while the experimental part offers new insights into the working principle, limitations and possibilities of the thermal analysis technique at the heart of this approach

    Comprendre et utiliser l'estimation de la stabilité du carbone organique du sol par l'analyse thermique Rock-EvalŸ

    No full text
    Soils store twice the amount of carbon that is found in atmosphere and vegetation combined. They act as a buffer between solid earth and atmosphere and exercise a major control on the atmospheric concentration of CO2 through the release or sink of greenhouse gases. Organic carbon in soils in the form of organic matter is essential to soil health and fertility, to nutrient availability and water quality. The performance of the most valuable tool at our disposal for understanding and predicting the evolution of this reservoir, soil organic carbon (SOC) dynamics models, is currently limited by a missing key: the ability to estimate the proportion of SOC that will remain unchanged over projection-relevant timescales. This important amount of carbon present in soils for centuries or millennia, and therefore considered “stable”, can vary greatly from one location to another. The goal of my thesis was to explore a new approach based on thermal analysis and machine learning, to characterise SOC, estimate the proportion of “stable” carbon in soil samples, and use this information to improve the accuracy of SOC dynamics models. In a second step, I focused on the thermal analysis technique in the heart of this approach to understand better the important information it offers, based on model laboratory experiments. Finally, the main results of my thesis consist of a complete and validated operational approach improving the accuracy of SOC models with a clear and significant value for “climate-smart” soil management, while the experimental part offers new insights into the working principle, limitations and possibilities of the thermal analysis technique at the heart of this approach.A la croisĂ©e de la terre solide et de l'atmosphĂšre, les sols forment le plus grand rĂ©servoir terrestre de carbone organique, contenant deux fois plus de carbone que l'atmosphĂšre et la vĂ©gĂ©tation rĂ©unies, et constituant un contrĂŽle majeur sur le flux des gaz Ă  effet de serre. En outre, le carbone organique des sols (COS) est essentiel pour leur santĂ© et fertilitĂ©, ainsi que pour la qualitĂ© de l'eau. La prĂ©cision de l'outil le plus prĂ©cieux dont nous disposons pour prĂ©dire l'Ă©volution de ce rĂ©servoir, les modĂšles de dynamique du COS, est limitĂ©e par notre capacitĂ© Ă  estimer la proportion du COS qui persistera sur le long terme. Cette quantitĂ© importante de carbone prĂ©sente dans les sols depuis des siĂšcles ou des millĂ©naires, considĂ©rĂ©e comme « stable », peut varier fortement d'un endroit Ă  l'autre. L'ambition de ma thĂšse Ă©tait d’explorer une nouvelle approche basĂ©e sur l'analyse thermique et l’apprentissage automatique, pour caractĂ©riser le COS, estimer la proportion du carbone « stable » dans les Ă©chantillons de sol et ensuite utiliser cette nouvelle information pour amĂ©liorer la prĂ©cision des modĂšles de dynamique du COS. Dans un deuxiĂšme temps, je me suis concentrĂ©e sur la technique de l'analyse thermique pour comprendre mieux les informations qu'elle offre, Ă  la base des expĂ©riences modĂšles en laboratoire. Enfin, les rĂ©sultats principaux de ma thĂšse consistent en une approche opĂ©rationnelle amĂ©liorant la prĂ©cision des modĂšles du COS avec une valeur claire et significative pour une gestion « intelligente » des sols et, en des nouveaux aperçus sur le principe de fonctionnement, les limites et les possibilitĂ©s de la technique d'analyse thermique au cƓur de cette approche

    Analyse de composés organiques purs par pyrolyse Rock-Eval et influence de la matrice minérale

    No full text
    International audienceL’utilisation croissante de la pyrolyse Rock-Eval pour caractĂ©riser les matiĂšres organiques des sols et des sĂ©diments rĂ©cents a conduit Carrie et al. (2012) Ă  analyser des produits organiques purs en vue d’interprĂ©ter les signaux et paramĂštres classiques de cette technique : S1, S2, S3, Tmax, index d’hydrogĂšne et d’oxygĂšne, etc. Si leur dĂ©marche est intĂ©ressante, elle a toutefois Ă©tĂ© menĂ©e avec une mĂ©thode inappropriĂ©e puisqu’ils ont utilisĂ© le mode ‘bulk rock basic’ adaptĂ© aux roches mĂšres pĂ©troliĂšres. En effet, la tempĂ©rature initiale de 300°C qui caractĂ©rise ce mode conduit Ă  une thermovaporisation brutale et prĂ©coce des produits organiques purs d’oĂč des pics S1 trĂšs forts et des Tmax parfois aberrants.Il nous a semblĂ© important de reprendre l’approche de Carrie et al. (2012) en commençant la pyrolyse Ă  200 °C, tel que prĂ©conisĂ© par Disnar et al. (2003) pour l’analyse des sols. Nous avons choisi d’analyser de l’albumine de sĂ©rum bovin, de la cystĂ©ine, du glucose, de la cellulose et du cholestĂ©rol comme composĂ©s modĂšles reprĂ©sentant des protĂ©ines, des carbohydrates et des lipides. Par ailleurs, nous avons examinĂ© l’influence de diffĂ©rentes matrices minĂ©rales lors de la pyrolyse de ces produits purs Ă  l’image de ce qu’avaient fait EspitaliĂ© et al. (1984) avec les kĂ©rogĂšnes. Du sable de Fontainebleau, de la calcite, de la kaolinite, de la montmorillonite et des oxy-hydroxydes de fer (ferrihydrite et goethite) ont ainsi Ă©tĂ© ajoutĂ©s Ă  sec Ă  chacun de ces produits purs. Le bilan carbone fourni par la pyrolyse Rock-Eval a Ă©tĂ© comparĂ© avec les rĂ©sultats d’une analyse Ă©lĂ©mentaire sur les mĂȘmes mĂ©langes synthĂ©tiques.Les rĂ©sultats montrent que dans la plupart des cas le bilan carbone du Rock-Eval est dĂ©ficitaire et que celui-ci l’est d’autant plus que les produits sont associĂ©s Ă  des oxy-hydroxydes de fer. Ces oxydes ont un effet catalytique qui favorise le craquage thermique du produit (fort pic S1) et la gĂ©nĂ©ration de composĂ©s oxygĂ©nĂ©s (CO et CO2) aux dĂ©pens du S2. Le sable n’apparait pas aussi inerte que prĂ©vu sur les produits purs. La kaolinite et la montmorillonite ont des effets contrastĂ©s selon la nature des produits. Il semblerait que la montmorillonite favorise la formation de coke pendant la phase de pyrolyse d’oĂč une diminution de la part de carbone pyrolysable au profit du carbone rĂ©siduel.Carrie et al. (2012) – Org. Geochem., 46, 38-53.Disnar et al. (2003) – Org. Geochem., 34, 327-343.EspitaliĂ© et al. (1984) – Org. Geochem., 6, 365-382

    Peut-on calculer la valeur de paramÚtres Rock-Eval pour la couche 0-50 cm à partir des valeurs mesurées sur les couches 0-30 et 30-50 cm ?

    No full text
    Les sols sont gĂ©nĂ©ralement Ă©chantillonnĂ©s Ă  diffĂ©rentes profondeurs fixes, sous forme de couches, mais ces profondeurs peuvent varier d’une Ă©tude Ă  l’autre. Pour calculer des stocks de carbone organique du sol Ă  des profondeurs donnĂ©es, les quantitĂ©s de COS prĂ©sentes dans les diffĂ©rents horizons peuvent ĂȘtre additionnĂ©es. Nous nous sommes demandĂ©s si, de la mĂȘme maniĂšre, il est possible de combiner les valeurs d’indicateurs Rock-Eval mesurĂ©es sur diffĂ©rentes profondeurs pour obtenir des valeurs d’indicateurs reprĂ©sentatives des Ă©chantillons combinĂ©s.Pour tester la linĂ©aritĂ© des indicateurs Rock-Eval, nous avons mĂ©langĂ© des Ă©chantillons de sol prĂ©levĂ©s en surface (0–30 cm) et en profondeur (30–50 cm) dans les diffĂ©rentes proportions suivantes : 100:0 ; 90:10 ; 75:25 ; 50:50 ; 25:75 ; 10:90 ; 0:100. Ces mĂ©langes ont Ă©tĂ© rĂ©alisĂ©s pour 8 sols de forĂȘt française Ă  pĂ©dologies contrastĂ©es. Nous avons ensuite analysĂ© les Ă©chantillons purs (100:0 et 0:100) et les mĂ©langes en Rock-Eval (n = 56 Ă©chantillons). Pour diffĂ©rents paramĂštres Rock-Eval, nous avons comparĂ© les valeurs mesurĂ©es pour les diffĂ©rents mĂ©langes aux moyennes pondĂ©rĂ©es (suivant la composition du mĂ©lange) des valeurs mesurĂ©es pour les Ă©chantillons de surface et de profondeur composant ces mĂ©langes.Nos rĂ©sultats montrent que la majoritĂ© des paramĂštres Rock-Eval sont linĂ©aires et qu’il est donc possible de dĂ©terminer la valeur du paramĂštre choisi pour l’horizon 0–50 cm Ă  partir des valeurs mesurĂ©es sur les horizons 0–30 cm et 30–50 cm. C’est en particulier le cas pour les paramĂštres suivants : TOC-RE6, HI, T50CO2pyr et T50CO2ox. Cependant pour deux des paramĂštres testĂ©s (OI et T50CHpyr) la relation entre valeurs mesurĂ©es et calculĂ©es est peu satisfaisante. Cette mauvaise adĂ©quation est particuliĂšrement observĂ©e dans certains types de sol avec des processus pĂ©dogĂ©nĂ©tiques marquĂ©s et qui conduisent Ă  des horizons trĂšs contrastĂ©s. D’autre part, ces deux paramĂštres sont aussi ceux prĂ©sentant la plus grande variabilitĂ©, ce qui explique au moins en partieles diffĂ©rences entre valeurs mesurĂ©es et calculĂ©es

    Can we calculate the value of Rock-Eval parameters for the 0-50 layer from the measured values on the layers 0-30 and 30-50 cm?

    No full text
    International audienceCurrent studies investigating soils use different sampling methods. Generally, soils are sampled in different soil horizons and the sampling depths may vary across studies or according to the soil profile composition. For some soil properties such as soil organic carbon stock, it is possible to calculate the organic carbon content of a soil profile by adding the values measured in each horizon. Soil organic carbon stock is therefore independent from the sampling strategy. In the recent years, Rock-Eval has been proposed as a reliable method to investigate soil organic carbon stock and its stability. The objective of this study is to determine, whether Rock-Eval parameters of soil organic matter in a given soil horizon, can also be calculated from Rock-Eval parameters measured in subhorizons; an idea which would greatly facilitate the comparison of results of studies using different sampling methods. In this study, samples from 10 French forest sites encompassing a variety of pedoclimates were used. At each site, samples were collected from two depth ranges, 0-30 and 30-50 cm. To test the linearity of the mixing of RE indicators, binary mixtures of surface and deep soil were composed for each site using five different mixing ratios (10:90, 25:75, 50:50, 75:25, 90:10). All 70 samples were then analysed using Rock-Eval, resulting in five classical RE parameters for each sample. The values of the RE parameters measured on composite samples were generally in good agreement with theoretical values, which were calculated using values measured on 0-30 cm and 30-50 cm according to the mixing equation. This is particularly the case for the following parameters: TOCRE6, PC,RC and OI. However, for HI the relationship between measured and calculated values is unsatisfactory. For sites with a clay-rich deep soil horizon layer and a surface layer with a coarser texture the variation was the highest. Retention of hydrocarbons by clay minerals is a common mineral matrix effect in pyrolysis methods and could explain this observation. Future research should include quantification of the mineral matrix effect for different soil types and calculation of a correction factor for the addition of parameters in a soil profile. Therefore, we conclude that in most temperate soils, most classical RE parameters of a soil profile can be indeed calculated as a sum of the different horizons

    Predicting Rock-Eval (R) thermal analysis parameters of a soil layer based on samples from its sublayers; an experimental study on forest soils

    No full text
    International audienceSoil sampling depths strongly vary across soil studies. Stocks of elements (such as C, N) or organic matter in a soil layer can be simply calculated from stocks measured in its sublayers. This calculation is less obvious for other soil characteristics, such as soil organic carbon (SOC) persistence, complicating the comparison of results from different studies. Here, we tested whether Rock-Eval (R) parameters of a soil layer, characterizing soil organic matter and its biogeochemical stability, can be determined using Rock-Eval (R) data measured on its sublayers. Soil samples collected in 10 plots located in eight French forest sites, taken up at two different depths (0-30 cm, 30-50 cm), and their mixtures were analysed with Rock-Eval (R). Expected values for the Rock-Eval (R) parameters of the soil mixtures were calculated either: (1) as the weighted mean of Rock-Eval (R) parameters measured on the two sublayers, or (2) based on a signal reconstructed as the weighted mean of Rock-Eval (R) thermograms recorded on the two sublayers. Our results showed a good agreement between measured and expected Rock-Eval (R) parameter values. However, when the clay content strongly differed between the two soil sublayers, the amount of pyrolyzed hydrocarbons measured on the soil mixtures was slightly lower than expected. We conclude that it is reasonable to calculate Rock-Eval (R) parameters of a soil layer, from the Rock-Eval (R) signature of its sublayers. Our findings facilitate the harmonization of Rock-Eval (R) data from large scale soil studies using different sampling depths

    Improving the accuracy of soil carbon models using a Rock-Eval-based initialization method

    No full text
    International audienceIn most soil organic carbon (SOC) dynamics models, SOC is divided into pools to which different mineralization rates are ascribed. The lack of a reliable, operational and fully validated method to initialize the size of the different SOC kinetic pools is a limitation for the accuracy of predictions of SOC stocks evolution provided by these models. AMG is a simple, well established French model, successfully used to simulate the evolution of C stocks for a large network of long-term monitored sites with agricultural experiments (LTEs). Initial conditions, namely the size of the stable C pool (CS) at the onset of the simulation, have been shown to be important for the accuracy of the model. Recently, Rock-Eval 6Âź (RE) thermal analysis has been proposed as a new method for direct determination of SOM stability. Based on this technique, a random forests model (RE model) was developed, calibrated on Long Term Bare Fallow data, which allows the estimation of the size of the centennially persistent SOC fraction (CPSOC) in a sample. Here, we first aimed at evaluating the performance of the RE model on fully independent soil samples. For this purpose, we compared the CPSOC values of 73 samples from 7 LTEs calculated with the RE model with the corresponding CS values optimized from AMG ex-post simulations. Then, we used the CPSOC values given by the RE model to define the size of the stable C pool of the AMG model (CS) at the onset of AMG simulations for the 7 sites. We show that the CPSOC (RE model) and optimized CS (ex-post AMG simulations) fractions are in good agreement (slope b=1.01, intercept a=0.04 / spearmanρ=0.88). This observation serves as a successful independent validation of the RE model. Finally, we show that the use of the RE based model improves the accuracy of the AMG model compared to default initialization (mean RMSE decreased by 13.5%), especially for sites with complex land-use history and long-term organic matter amendment. Our study therefore provides an operational method suitable to initialize the AMG model that can be expanded to other SOC dynamics models
    corecore