10 research outputs found

    PASS2 version 4: An update to the database of structure-based sequence alignments of structural domain superfamilies

    Get PDF
    Accurate structure-based sequence alignments of distantly related proteins are crucial in gaining insight about protein domains that belong to a superfamily. The PASS2 database provides alignments of proteins related at the superfamily level and are characterized by low sequence identity. We thus report an automated, updated version of the superfamily alignment database known as PASS2.4, consisting of 1961 superfamilies and 10 569 protein domains, which is in direct correspondence with SCOP (1.75) database. Database organization, improved methods for efficient structure-based sequence alignments and the analysis of extreme distantly related proteins within superfamilies formed the focus of this update. Alignment of family-specific functional residues can be realized using such alignments and is shown using one superfamily as an example. The database of alignments and other related features can be accessed at http://caps.ncbs.res.in/pass2/

    Critical assessment of structure-based sequence alignment methods at distant relationships

    No full text
    Accurate sequence alignments are crucial for modelling and to provide an evolutionary picture of related proteins. It is well-known that alignments are hard to obtain during distant relationships. Three thousand and fifty-two alignments of 218 pairs of protein domain structural entries, with <40% sequence identity, belonging to different structural classes, of diverse domain sizes and length-rigid/variable domains were performed using 12 programs. Structural parameters such as root mean square deviation, secondary-structural content and equivalences were considered for critical assessment. Methods that compare fragments and permit twists and translations align well during distant relationships and length variations

    Diproline Templates as Folding Nuclei in Designed Peptides. Conformational Analysis of Synthetic Peptide Helices Containing Amino Terminal Pro-Pro Segments

    No full text
    The effect of N-terminal diproline segments in nucleating helical folding in designed peptides has been studied in two model sequences Piv-Pro-Pro-Aib-Leu-Aib-Phe-OMe (1) and Boc-Aib-Pro-Pro-Aib-Val-Ala-Phe-OMe (2). The structure of 1 in crystals, determined by X-ray diffraction, reveals a helical (RR) conformation for the segment residues 2 to 5, stabilized by one 4 -> 1 hydrogen bond and two 5 -> 1 interactions. The N-terminus residue, Pro(1) adopts a polyproline II (P-II) conformation. NMR studies in three different solvent systems support a conformation similar to that observed in crystals. In the apolar solvent CDCl3, NOE data favor the population of both completely helical and partially unfolded structures. In the former, the Pro-Pro segment adopts an alpha(R)-alpha(R) conformation, whereas in the latter, a P-II-alpha(R) structure is established. The conformational equilibrium shifts in favor of the P-II-alpha(R) structure in solvents like methanol and DMSO. A significant population of the Pro(1)- Pro(2) cis conformer is also observed. The NMR results are consistent with the population of at least three conformational states about Pro- Pro segment: trans alpha(R)-alpha(R), trans P-II-alpha(R) and cis P-II-alpha(R). Of these, the two trans conformers are in rapid dynamic exchange on the NMR time scale, whereas the interconversion between cis and trans form is slow. Similar results are obtained with peptide 2. Analysis of 462 diproline segments in protein crystal structures reveals 25 examples of the alpha(R)-alpha(R) conformation followed by a helix. Modeling and energy minimization studies suggest that both P-II-alpha(R) and alpha(R)-alpha(R) conformations have very similar energies in the model hexapeptide
    corecore