36 research outputs found

    Evolutionary implications of the distribution and variation of the skeletal muscles of the anuran lymphatic system

    Get PDF
    Lymphatic return to the circulation in anurans is dependent upon the interaction of a number of skeletal muscles and lung deflation. We define character states and describe variation of these putative lymphatic skeletal muscles: the M. cutaneus pectoris (CP), M. cutaneus dorsi (CD), M. piriformis (P), M. sphincter ani cloacalis (SAC), and the complex of the M. gracilis minor/M. abdominal crenator (GM/AC). We include examination of over 400 specimens of 377 species belonging to 40 of the 42 currently recognized anuran families. Some muscles show limited variation (P) or are clearly linked to phylogeny (CP; CD) and thus have limited value in the determination of form and function. However, the GM/AC and SAC show a high degree of structural variation that appears in taxa across the phylogenetic spectrum. This allows us to make phylogenetically independent determinations of form and function. We define an ancestral state of the GM and conclude that evolution of the GM/AC and SAC has progressed in two directions from this ancestral state: toward either elaboration or reduction. Where present, the character states of both of these muscle groups were observed in all species examined and the number of states correlated within each family as well. The degree of development of the GM/AC and SAC compliance pump system is strongly correlated with previously determined lymph flux rates in a three species test. Our data suggest there may be a relationship between greater elaboration of the GM/AC and SAC system and terrestriality among the Anura. © 2013 The Author(s)

    Lymphatic regulation in nonmammalian vertebrates

    No full text
    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression. Copyright © 2013 the American Physiological Society
    corecore