20 research outputs found

    Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana

    Get PDF
    The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress

    Transcriptional Analysis Implicates Endoplasmic Reticulum Stress in Bovine Spongiform Encephalopathy

    Get PDF
    Bovine spongiform encephalopathy (BSE) is a fatal, transmissible, neurodegenerative disease of cattle. To date, the disease process is still poorly understood. In this study, brain tissue samples from animals naturally infected with BSE were analysed to identify differentially regulated genes using Affymetrix GeneChip Bovine Genome Arrays. A total of 230 genes were shown to be differentially regulated and many of these genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response and transcription. Seventeen genes are associated with the endoplasmic reticulum (ER) and 10 of these 17 genes are involved in stress related responses including ER chaperones, Grp94 and Grp170. Western blotting analysis showed that another ER chaperone, Grp78, was up-regulated in BSE. Up-regulation of these three chaperones strongly suggests the presence of ER stress and the activation of the unfolded protein response (UPR) in BSE. The occurrence of ER stress was also supported by changes in gene expression for cytosolic proteins, such as the chaperone pair of Hsp70 and DnaJ. Many genes associated with the ubiquitin-proteasome pathway and the autophagy-lysosome system were differentially regulated, indicating that both pathways might be activated in response to ER stress. A model is presented to explain the mechanisms of prion neurotoxicity using these ER stress related responses. Clustering analysis showed that the differently regulated genes found from the naturally infected BSE cases could be used to predict the infectious status of the samples experimentally infected with BSE from the previous study and vice versa. Proof-of-principle gene expression biomarkers were found to represent BSE using 10 genes with 94% sensitivity and 87% specificity

    The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco

    Get PDF
    The ER-resident molecular chaperone BiP (binding protein) was overexpressed in soybean. When plants growing in soil were exposed to drought (by reducing or completely withholding watering) the wild-type lines showed a large decrease in leaf water potential and leaf wilting, but the leaves in the transgenic lines did not wilt and exhibited only a small decrease in water potential. During exposure to drought the stomata of the transgenic lines did not close as much as in the wild type, and the rates of photosynthesis and transpiration became less inhibited than in the wild type. These parameters of drought resistance in the BiP overexpressing lines were not associated with a higher level of the osmolytes proline, sucrose, and glucose. It was also not associated with the typical drought-induced increase in root dry weight. Rather, at the end of the drought period, the BiP overexpressing lines had a lower level of the osmolytes and root weight than the wild type. The mRNA abundance of several typical drought-induced genes [NAC2, a seed maturation protein (SMP), a glutathione-S-transferase (GST), antiquitin, and protein disulphide isomerase 3 (PDI-3)] increased in the drought-stressed wild-type plants. Compared with the wild type, the increase in mRNA abundance of these genes was less (in some genes much less) in the BiP overexpressing lines that were exposed to drought. The effect of drought on leaf senescence was investigated in soybean and tobacco. It had previously been reported that tobacco BiP overexpression or repression reduced or accentuated the effects of drought. BiP overexpressing tobacco and soybean showed delayed leaf senescence during drought. BiP antisense tobacco plants, conversely, showed advanced leaf senescence. It is concluded that BiP overexpression confers resistance to drought, through an as yet unknown mechanism that is related to ER functioning. The delay in leaf senescence by BiP overexpression might relate to the absence of the response to drought

    Overexpression of the Endoplasmic Reticulum Chaperone BiP3 Regulates XA21-Mediated Innate Immunity in Rice

    Get PDF
    Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the innate immune response. Although PRR-mediated signaling events are critical to the survival of plants and animals, secretion and localization of PRRs have not yet been clearly elucidated. Here we report the in vivo interaction of the endoplasmic reticulum (ER) chaperone BiP3 with the rice XA21 PRR, which confers resistance to the Gram negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). We show that XA21 is glycosylated and is primarily localized to the ER and also to the plasma membrane (PM). In BiP3-overexpressing rice plants, XA21-mediated immunity is compromised, XA21 stability is significantly decreased, and XA21 proteolytic cleavage is inhibited. BiP3 overexpression does not affect the general rice defense response, cell death or brassinolide-induced responses. These results indicate that BiP3 regulates XA21 protein stability and processing and that this regulation is critical for resistance to Xoo

    Prostagladin D2 is a mast cell-derived antiangiogenic factor in lung carcinoma

    No full text
    It is well established that prostaglandins (PGs) are involved in tumor angiogenesis and growth, yet the role of prostaglandin D2 (PGD2) remains virtually unknown. Here, we show that host hematopoietic PGD2 synthase (H-PGDS) deficiency enhances Lewis lung carcinoma (LLC) progression, accompanied by increased vascular leakage, angiogenesis, and monocyte/mast cell infiltration. This deficiency can be rescued by hematopoietic reconstitution with bone marrow from H-PGDS–naive (WT) mice. In tumors on WT mice, c-kit+ mast cells highly express H-PGDS. Host H-PGDS deficiency markedly up-regulated the expression of proangiogenic factors, including TNF-α in the tumor. In mast cell-null KitW-sh/W-sh mice, adoptive transfer of H-PGDS–deficient mast cells causes stronger acceleration in tumor angiogenesis and growth than in WT mast cells. In response to LLC growth, H-PGDS–deficient mast cells produce TNF-α excessively. This response is suppressed by the administration of a synthetic PGD2 receptor agonist or a degradation product of PGD2, 15-deoxy-Δ12,14-PGJ2. Additional TNF-α deficiency partially counteracts the tumorigenic properties seen in H-PGDS–deficient mast cells. These observations identify PGD2 as a mast cell-derived antiangiogenic factor in expanding solid tumors. Mast cell-derived PGD2 governs the tumor microenvironment by restricting excessive responses to vascular permeability and TNF-α production
    corecore