91 research outputs found

    Predicting alcohol-related memory problems in older adults: A machine learning study with multi-domain features

    Get PDF
    Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (ages 50-81 years) with alcohol-induced memory problems (the memory group) were compared with a matched control group who did not have memory problems. The random forests model identified specific features from each domain that contributed to the classification of the memory group vs. the control group (AUC = 88.29%). Specifically, individuals from the memory group manifested a predominant pattern of hyperconnectivity across the default mode network regions except for some connections involving the anterior cingulate cortex, which were predominantly hypoconnected. Other significant contributing features were: (i) polygenic risk scores for AUD, (ii) alcohol consumption and related health consequences during the past five years, such as health problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a day during the past twelve months, and (iii) elevated neuroticism and increased harm avoidance, and fewer positive uplift life events. At the neural systems level, hyperconnectivity across the default mode network regions, including the connections across the hippocampal hub regions, in individuals with memory problems may indicate dysregulation in neural information processing. Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-state brain connectivity data collected ~18 years ago, together with personality, life experiences, polygenic risk, and alcohol consumption and related consequences, to predict the alcohol-related memory problems that arise in later life

    Deficient event-related theta oscillations in individuals at risk for alcoholism: A study of reward processing and impulsivity features

    Get PDF
    Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism.EROs were recorded during a monetary gambling task (MGT) in 12-25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups.HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects.As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders

    The CS1 segment of fibronectin is involved in human OSCC pathogenesis by mediating OSCC cell spreading, migration, and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The alternatively spliced V region or type III connecting segment III (IIICS) of fibronectin is important in early development, wound healing, and tumorigenesis, however, its role in oral cancer has not been fully investigated. Thus, we investigated the role of CS-1, a key site within the CSIII region of fibronectin, in human oral squamous cell carcinoma (OSCC).</p> <p>Methods</p> <p>To determine the expression of CS-1 in human normal and oral SCC tissue specimens immunohistochemical analyses were performed. The expression of CS1 was then associated with clinicopathological factors. To investigate the role of CS-1 in regulating OSCC cell spreading, migration and invasion, OSCC cells were assayed for spreading and migration in the presence of a CS-1 peptide or a CS-1 blocking peptide, and for invasion using Matrigel supplemented with these peptides. In addition, integrin α4siRNA or a focal adhesion kinase (FAK) anti-sense oligonucleotide was transfected into OSCC cells to examine the mechanistic role of integrin α4 or FAK in CS1-mediated cell spreading and migration, respectively.</p> <p>Results</p> <p>CS-1 expression levels were significantly higher in OSCC tissues compared to normal tissues (p < 0.05). Also, although, high levels of CS-1 expression were present in all OSCC tissue samples, low-grade tumors stained more intensely than high grade tumors. OSCC cell lines also expressed higher levels of CS-1 protein compared to normal human primary oral keratinocytes. There was no significant difference in total fibronectin expression between normal and OSCC tissues and cells. Inclusion of CS-1 in the in vitro assays enhanced OSCC cell spreading, migration and invasion, whereas the CS1 blocking peptide inhibited these processes. Suppression of integrin α4 significantly inhibited the CS1-mediated cell spreading. Furthermore, this migration was mediated by focal adhesion kinase (FAK), since FAK suppression significantly blocked the CS1-induced cell migration.</p> <p>Conclusion</p> <p>These data indicate that the CS-1 site of fibronectin is involved in oral cancer pathogenesis and in regulating OSCC cell spreading, migration and invasion.</p

    Time Course of the Neural Activity Related to Behavioral Decision-Making as Revealed by Event-Related Potentials

    Get PDF
    Objective: To study the time course of the electrocortical activity evoked by gains and losses in the Iowa Gambling Task (IGT), the brain sources of this electrical activity, and its association with behavioral parameters of task performance in order to achieve a better knowledge of decision-making processes. Method: Event-related potentials (ERPs) were obtained from a 64-channel EEG in 25 participants when performing the IGT. Brain source localization analyses of the ERP components were also assessed. Results: ERP amplitudes were sensitive to gains and losses. An early fronto-central negativity was elicited when feedback was provided for both gains and losses, and correlated with the number of gains at FCz and with the number of both gains and losses at Cz. The P200 component had larger amplitudes to losses and correlated positively with the number of losses. Feedback related negativity (FRN) was higher at frontal, temporal and occipital electrodes in trials with monetary losses. In addition, trials with monetary losses elicited larger P300 magnitudes than trials with monetary gains at all electrode localizations. Conclusions: All ERP components (except P300) were related to participants’ performance in the IGT. Amplitudes of P200 and P300 were associated with the conscious recognition of the error during the decision-making. Performance data and source analysis underline the importance of the medial prefrontal cortex when processing feedback about monetary losses in the IGT.This research was supported by grants from the Spanish Ministry of Science and Innovation (Ministerio de Ciencia y Tecnología), European Regional Development Funds (ERDF) and Ministry of Economy, Industry and Competitiveness (Ministerio de Economía, Industria y Competitividad, Gobierno de España). References: PSI2008-04394, PSI2017-88388-C4-1-R and PSI2017-88388-C4-3-R

    Alcohol-Related Context Modulates Performance of Social Drinkers in a Visual Go/No-Go Task: A Preliminary Assessment of Event-Related Potentials

    Get PDF
    Background Increased alcohol cue-reactivity and altered inhibitory processing have been reported in heavy social drinkers and alcohol-dependent patients, and are associated with relapse. In social drinkers, these two processes have been usually studied separately by recording event-related potentials (ERPs) during rapid picture presentation. The aim of our study was to confront social drinkers to a task triggering high alcohol cue-reactivity, to verify whether it specifically altered inhibitory performance, by using long-lasting background picture presentation. Methods ERP were recorded during visual Go/No-Go tasks performed by social drinkers, in which a frequent Go signal (letter “M”), and a rare No-Go signal (letter “W”) were superimposed on three different types of background pictures: neutral (black background), alcohol-related and non alcohol-related. Results Our data suggested that heavy social drinkers made more commission errors than light drinkers, but only in the alcohol-related context. Neurophysiologically, this was reflected by a delayed No-Go P3 component. Conclusions Elevated alcohol cue-reactivity may lead to poorer inhibitory performance in heavy social drinkers, and may be considered as an important vulnerability factor in developing alcohol misuse. Prevention programs should be designed to decrease the high arousal of alcohol stimuli and strengthen cognitive control in young, at-risk individuals.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Influence of Age, Circadian and Homeostatic Processes on Inhibitory Motor Control: A Go/Nogo Task Study

    Get PDF
    INTRODUCTION: The contribution of circadian system and sleep pressure influences on executive performance as a function of age has never been studied. The aim of our study was to determine the age-related evolution of inhibitory motor control (i.e., ability to suppress a prepotent motor response) and sustained attention under controlled high or low sleep pressure conditions. METHODS: 14 healthy young males (mean age = 23 ± 2.7; 20-29 years) and 11 healthy older males (mean age = 68 ± 1.4; 66-70 years) were recruited. The volunteers were placed for 40 hours in "constant routine". In the "Sleep Deprivation SD" condition, the volunteer was kept awake for 40 hours to obtain a high sleep pressure condition interacting with the circadian process. In the "NAP" condition, the volunteer adopted a short wake/sleep cycle (150/75 min) resulting in a low sleep pressure condition to counteract the homeostatic pressure and investigate the circadian process. Performances were evaluated by a simple reaction time task and a Go/Nogo task repeated every 3H45. RESULTS: In the SD condition, inhibitory motor control (i.e., ability to inhibit an inappropriate response) was impaired by extended wakefulness equally in both age groups (P<.01). Sustained attention (i.e. ability to respond accurately to appropriate stimuli) on the executive task decreased under sleep deprivation in both groups, and even more in young participants (P<.05). In the NAP condition, age did not influence the time course of inhibitory motor control or sustained attention. In the SD and NAP conditions, older participants had a less fluctuating reaction time performance across time of day than young participants (P<.001). CONCLUSION: Aging could be a protective factor against the effects of extended wakefulness especially on sustained attention failures due to an attenuation of sleep pressure with duration of time awake

    Effects of small interfering RNAs targeting fascin on human esophageal squamous cell carcinoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fascin induces membrane protrusions and cell motility. Fascin overexpression was associated with poor prognosis, and its downregulation reduces cell motility and invasiveness in esophageal squamous cell carcinoma (ESCC). Using a stable knockdown cell line, we revealed the effect of fascin on cell growth, cell adhesion and tumor formation.</p> <p>Methods</p> <p>We examined whether fascin is a potential target in ESCC using <it>in vitro </it>and <it>in vivo </it>studies utilizing a specific siRNA. We established a stable transfectant with downregulated fascin from KYSE170 cell line.</p> <p>Results</p> <p>The fascin downregulated cell lines showed a slower growth pattern by 40.3% (p < 0.01) and detachment from collagen-coated plates by 53.6% (p < 0.01), compared to mock cells, suggesting that fascin plays a role in cell growth by maintaining cell adhesion to the extracellular matrix. <it>In vivo</it>, the tumor size was significantly smaller in the tumor with fascin knockdown cells than in mock cells by 95% at 30 days after inoculation.</p> <p>Conclusions</p> <p>These findings suggest that fascin overexpression plays a role in tumor growth and progression in ESCC and that cell death caused by its downregulation might be induced by cell adhesion loss. This indicates that targeting fascin pathway could be a novel therapeutic strategy for the human ESCC.</p
    corecore