13 research outputs found
High-resolution climate change scenarios for India for the 21st century
A state-of-art regional climate modelling system, known as PRECIS (Providing Regional Climates for Impacts Studies) developed by the Hadley Centre for Climate Prediction and Research, is applied for India to develop high-resolution climate change scenarios. The presentday simulation (1961-1990) with PRECIS is evaluated, including an examination of the impact of enhanced resolution and an identification of biases. The RCM is able to resolve features on finer scales than those resolved by the GCM, particularly those related to improved resolution of the topography. The most notable advantage of using the RCM is a more realistic representation of the spatial patterns of summer monsoon rainfall such as the maximum along the windward side of the Western Ghats. There are notable quantitative biases in precipitation over some regions, mainly due to similar biases in the driving GCM. PRECIS simulations under scenarios of increasing greenhouse gas concentrations and sulphate aerosols indicate marked increase in both rainfall and temperature towards the end of the 21st century. Surface air temperature and rainfall show similar patterns of projected changes under A2 and B2 scenarios, but the B2 scenario shows slightly lower magnitudes of the projected change. The warming is monotonously widespread over the country, but there are substantial spatial differences in the projected rainfall changes. West central India shows maximum expected increase in rainfall. Extremes in maximum and minimum temperatures are also expected to increase into the future, but the night temperatures are increasing faster than the day temperatures. Extreme precipitation shows substantial increases over a large area, and particularly over the west coast of India and west central India
Anesthetic challenges in difficult airway in a patient with maxillary carcinoma: A case report
Key Clinical Message Airway management in patients with maxillary carcinoma presents unique challenges. To ensure safety, a tailored and collaborative approach is essential. This is a case where anesthetic plan of awake fiberoptic oral endotracheal intubation was chosen
Discrimination of a transformation phenotype in Syrian golden hamster embryo (SHE) cells using ATR-FTIR spectroscopy.
Primary Syrian hamster embryo (SHE) cells might be used to assess morphological transformation following treatment with chemical carcinogens. We employed attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to interrogate SHE colonies, as complex biomolecules absorb in the mid-infrared (IR; λ = 2–20 μm) giving vibrational spectra associated with structure and function. Early-passage SHE cells were cultured (pH 6.7) in the presence or absence of benzo[a]pyrene (B[a]P; 5.0 μg/ml). Unstained colonies were applied to an ATR crystal, and vibrational spectra were obtained in the ATR mode using a Bruker Vector 22 FTIR spectrometer with Helios ATR attachment. These were individually baseline-corrected and normalised. Spectra were then analysed using principal component analysis (PCA) plus linear discriminant analysis (LDA). PCA was used to reduce the dataset dimensions before LDA was employed to reveal clustering. This determined whether wavenumber–absorbance relationships expressed as single points (scores) in ‘hyperspace’ might on the basis of multivariate distance reveal biophysical differences associated with morphologies in vehicle control (non-transformed or transformed) or carcinogen-treated (non-transformed or transformed) cells. Retrospectively designated SHE colonies (following staining and microscopic analysis) clustered according to whether they were vehicle control (non-transformed), B[a]P-treated (non-transformed) or transformed (control and B[a]P-treated). Scores plots pointed to a B[a]P-treated phenotype and derived loadings plots highlighted distinguishing markers in control transformed vs. B[a]P-treated transformed; these were mostly associated with Amide I, Amide II and phosphate stretching (asymmetric and symmetric) vibrations. Combined application of ATR-FTIR spectroscopy and unsupervised (PCA)/supervised (LDA) may be a novel approach to scoring SHE colonies for morphological transformation
Syrian hamster embryo (SHE) assay (pH 6.7) coupled with infrared spectroscopy and chemometrics towards toxicological assessment
The Syrian hamster embryo (SHE) assay (pH 6.7) is an in vitro candidate to replace in vivo carcinogenicity tests. However, the conventional method of visual scoring of foci (non-transformed vs. transformed colonies) can be time-consuming and is open to subjectivity. Infrared (IR) spectroscopy has the potential to provide objective assessment of such SHE colonies with the added advantage of potentially providing mechanistic information. In this study, SHE cells were treated with one of eight different chemical regimens, allowed in culture to attach and form foci on IR-reflective glass slides; these were subsequently interrogated by attenuated total reflection (ATR) Fourier-transform IR (FTIR) spectroscopy. Derived mid-IR spectra (n=13,406) were subjected to chemometric analysis focusing primarily on the extraction of biochemical information related to test agent treatment and/or morphological transformation. The use of ATR-FTIR spectroscopy with chemometrics to analyze the SHE assay is a novel approach to toxicological assessment
JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: I. Summary of pre-validation study results
The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this validation effort is to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The purpose of the pre-validation studies (i.e., Phases 1 through 3), conducted in four or five laboratories with extensive comet assay experience, was to optimize the protocol to be used during the definitive validation study.JRC.I.5-Systems Toxicolog
Classification of agents using Syrian hamster embryo (SHE) cell transformation assay (CTA) with ATR-FTIR spectroscopy and multivariate analysis
The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has a reported sensitivity of 87% and specificity of 83%, and an overall concordance of 85% with in vivo rodent bioassay data. To date, the SHE assay is the only in vitro assay that exhibits multistage carcinogenicity. The assay uses morphological transformation, the first stage towards neoplasm, as an endpoint to predict the carcinogenic potential of a test agent. However, scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with 2,6-diaminotoluene, N-nitroso-N-ethylnitroguanidine, N-nitroso-N-methylurea, N-nitroso-N-ethylurea, EDTA, dimethyl sulphoxide (DMSO; vehicle control), methyl methanesulfonate, benzoepyrene, mitomycin C, ethyl methanesulfonate, ampicillin or five different concentrations of benzoapyrene. Macroscopically visible SHE colonies were located on the slides and interrogated using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy acquiring five spectra per colony. The acquired IR data were analysed using Fisher?s linear discriminant analysis (LDA) followed by principal component analysis (PCA)-LDA cluster vectors to extract major and minor discriminating wavenumbers for each treatment class. Each test agent vs. DMSO and treatment-induced transformed cells vs. corresponding non-transformed were classified by a unique combination of major and minor discriminating wavenumbers. Alterations associated with Amide I, Amide II, lipids and nucleic acids appear to be important in segregation of classes. Our findings suggest that a biophysical approach of ATR-FTIR spectroscopy with multivariate analysis could facilitate a more objective interrogation of SHE cells towards scoring for transformation and ultimately employing the assay for risk assessment of test agents
A mechanistic evaluation of the Syrian hamster embryo cell transformation assay (pH 6.7) and molecular events leading to senescence bypass in SHE cells
The implementation of the Syrian hamster embryo cell transformation assay (SHE CTA) into test batteries and its relevance in predicting carcinogenicity has been long debated. Despite prevalidation studies to ensure reproducibility and minimise the subjective nature of the assay’s endpoint, an underlying mechanistic and molecular basis supporting morphological transformation (MT) as an indicator of carcinogenesis is still missing. We found that only 20 % of benzo(a)pyrene-induced MT clones immortalised suggesting that, alone, the MT phenotype is insufficient for senescence bypass. From a total of 12 B(a)P- immortalised MT lines, inactivating p53 mutations were identified in 30 % of clones, and the majority of these were consistent with the potent carcinogen’s mode of action. Expression of p16 was commonly silenced or markedly reduced with extensive promoter methylation observed in 45 % of MT clones, while Bmi1 was strongly upregulated in 25 % of clones. In instances where secondary events to MT appeared necessary for senescence bypass, as evidenced by a transient cellular crisis, clonal growth correlated with monoallelic deletion of the CDKN2A/B locus. The findings further implicate the importance of p16 and p53 pathways in regulating senescence while providing a molecular evaluation of SHE CTA -derived variant MT clones induced by benzo(a)pyrene
JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for detection of genotoxic carcinogens: II. Summary of definitive validation study results
The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this exercise was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The study protocol was optimized in the pre-validation studies, and then the definitive (4th phase) validation study was conducted in two steps. In the 1st step, assay reproducibility was confirmed among laboratories using four coded reference chemicals and the positive control ethyl methanesulfonate. In the 2nd step, the predictive capability was investigated using 40 coded chemicals with known genotoxic and carcinogenic activity (i.e., genotoxic carcinogens, genotoxic non-carcinogens, non-genotoxic carcinogens, and non-genotoxic non-carcinogens). Based on the results obtained, the in vivo comet assay is concluded to be highly capable of identifying genotoxic chemicals and therefore can serve as a reliable predictor of rodent carcinogenicity.JRC.I.5-Systems Toxicolog