1,884 research outputs found

    Near-infrared emission from sublimating dust in collisionally active debris disks

    Get PDF
    Hot exozodiacal dust is thought to be responsible for excess near-infrared (NIR) emission emanating from the innermost parts of some debris disks. The origin of this dust, however, is still a matter of debate. We test whether hot exozodiacal dust can be supplied from an exterior parent belt by Poynting-Robertson (P-R) drag, paying special attention to the pile-up of dust that occurs due to the interplay of P-R drag and dust sublimation. Specifically, we investigate whether pile-ups still occur when collisions are taken into account, and if they can explain the observed NIR excess. We compute the steady-state distribution of dust in the inner disk by solving the continuity equation. First, we derive an analytical solution under a number of simplifying assumptions. Second, we develop a numerical debris disk model that for the first time treats the complex interaction of collisions, P-R drag, and sublimation in a self-consistent way. From the resulting dust distributions we generate thermal emission spectra and compare these to observed excess NIR fluxes. We confirm that P-R drag always supplies a small amount of dust to the sublimation zone, but find that a fully consistent treatment yields a maximum amount of dust that is about 7 times lower than that given by analytical estimates. The NIR excess due this material is much smaller (<10^-3 for A-type stars with parent belts at >1 AU) than the values derived from interferometric observations (~10^-2). Pile-up of dust still occurs when collisions are considered, but its effect on the NIR flux is insignificant. Finally, the cross-section in the innermost regions is clearly dominated by barely bound grains.Comment: 18 pages, 10 figures, A&A accepte

    VALUASI EKONOMI DALAM PELESTARIAN TAMAN NASIONAL KEPULAUAN KARIMUNJAWA (Studi Kasus Pengunjung Taman Nasional Karimunjawa Kabupaten Jepara)

    Get PDF
    Jepara district located in the eastern north coast of Central Java, western and northern parts by the sea, land area Jepara regency 1004.132 km2 with a coastline of 72 km, consisting of 14 districts were divided over some 183 and 11 villages. Jepara regency also includes the Karimun Islands, which is a cluster of islands in the Java Sea. Two of its largest island is the island of Karimun and Kemujan Island region. The purpose of this study are: (1) to analyze the socio-economic characteristics of the National Park Publications, (2) to analyze the level of awareness about the usefulness and concern for visitors to keep the reef and beach cleanliness Karimunjawa National Park (3) Estimate the value of willingness visitors to pay (willingness to pay) in the preservation of coral reefs and beaches Karimunjawa National Park as well (4) as drafting retribution withdrawal of environmental conservation efforts beaches and coral reefs independently. This study used primary data and secondary data. Primary data obtained from respondents National Park visitor many as 100 people with a accidental sample and 4 aspect key persons with a purposive sample. Secondary data were obtained from the BPS and the National Park Publications. Descriptive statistics are used to answer objectives 1 and 2, Contingent Valuation Method to answer the purpose no 3 and in-depth interview to answer the purpose 4. The results of this study are age visitor respondents in this study is dominated by the age of 21-25 years. Showed that the level of Visitors to the cleanliness level of awareness the coast is still at the assessment Not Good. The average value respondents WTP is Rp 18,000, - and the total WTP attempts beach cleanliness and conservation of coral reef Karimunjawa National Park Rp. 272.88 million. The design of retribution withdrawal should involve four aspects, namely Academics, social government, private and public parties to be genuine Publications retribution policy be implemented and not be conflict and overlapping social policies so that every aspect of his retribution can to beach cleanliness and sustainability of coral reef conservation in the Karimunjawa National Park

    Variations in morphological characteristics, lipid content and chemical composition of safou (Dacryodes edulis (G. Don) H.J.LAM.) according to fruit distribution. A case study

    Get PDF
    A ten year old safou tree studied here bears 2820 fruits gathered on 557 bunches with 1 to 31 fruits on bunch. The fruit distribution was examined according to the geographical orientation (North, South, East, West) and the distance to the ground (Levels I, II, III), from the bottom towards the top of the tree). A sample of ten fruits per orientation and per level (120 fruits) was submitted to a detailed study (morphology, moisture, oil contents, fatty acid and triacylglycerol composition) according to the preceding factors. It was observed that East-West axis charged out 60% of total fruit number and these fruits were more homogeneous than North-South axis, and level III, (top of the tree) carried more than half of the total fruit number. Oil content of pulp increased from level I to level III (18–50%) whereas it varied weakly according to orientation. The fatty acid and triacylglycerol compositions were influenced neither by the orientation, nor by the distance to the groun

    Shedding light on the formation of the pre-biotic molecule formamide with ASAI

    Get PDF
    Formamide (NH2CHO) has been proposed as a pre-biotic precursor with a key role in the emergence of life on Earth. While this molecule has been observed in space, most of its detections correspond to high-mass star-forming regions. Motivated by this lack of investigation in the low-mass regime, we searched for formamide, as well as isocyanic acid (HNCO), in 10 low- and intermediate-mass pre-stellar and protostellar objects. The present work is part of the IRAM Large Programme ASAI (Astrochemical Surveys At IRAM), which makes use of unbiased broadband spectral surveys at millimetre wavelengths. We detected HNCO in all the sources and NH2CHO in five of them. We derived their abundances and analysed them together with those reported in the literature for high-mass sources. For those sources with formamide detection, we found a tight and almost linear correlation between HNCO and NH2CHO abundances, with their ratio being roughly constant -between 3 and 10- across 6 orders of magnitude in luminosity. This suggests the two species are chemically related. The sources without formamide detection, which are also the coldest and devoid of hot corinos, fall well off the correlation, displaying a much larger amount of HNCO relative to NH2CHO. Our results suggest that, while HNCO can be formed in the gas phase during the cold stages of star formation, NH2CHO forms most efficiently on the mantles of dust grains at these temperatures, where it remains frozen until the temperature rises enough to sublimate the icy grain mantles. We propose hydrogenation of HNCO as a likely formation route leading to NH2CHO.Comment: 26 pages, 9 figures. Accepted by Monthly Notices of the Royal Astronomical Societ

    Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve

    Get PDF
    Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of dust grains, which can trail the planet in a comet-like tail. When such objects occult their host star, the resulting transit signal contains information about the dust in the tail. We aim to use the detailed shape of the Kepler light curve of KIC 12557548b to constrain the size and composition of the dust grains that make up the tail, as well as the mass loss rate of the planet. Using a self-consistent numerical model of the dust dynamics and sublimation, we calculate the shape of the tail by following dust grains from their ejection from the planet to their destruction due to sublimation. From this dust cloud shape, we generate synthetic light curves (incorporating the effects of extinction and angle-dependent scattering), which are then compared with the phase-folded Kepler light curve. We explore the free-parameter space thoroughly using a Markov chain Monte Carlo method. Our physics-based model is capable of reproducing the observed light curve in detail. Good fits are found for initial grain sizes between 0.2 and 5.6 micron and dust mass loss rates of 0.6 to 15.6 M_earth/Gyr (2-sigma ranges). We find that only certain combinations of material parameters yield the correct tail length. These constraints are consistent with dust made of corundum (Al2O3), but do not agree with a range of carbonaceous, silicate, or iron compositions. Using a detailed, physically motivated model, it is possible to constrain the composition of the dust in the tails of evaporating rocky exoplanets. This provides a unique opportunity to probe to interior composition of the smallest known exoplanets.Comment: 18 pages, 11 figures, A&A accepte

    Depletion of chlorine into HCl ice in a protostellar core

    Get PDF
    The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <105<10^{-5} has not yet been well studied. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H2_{2} hyperfine collisional excitation rate coefficients. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9e-11, a factor of only 0.001 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of <1e-10 in most of the protostellar core. We find the 35Cl/37Cl ratio in OMC-2 FIR 4 to be 3.2\pm0.1, consistent with the solar system value.Comment: 13 pages, 12 figures, accepted for publication in A&

    Relation between metallicities and spectral energy distributions of Herbig Ae/Be stars. A potential link with planet formation

    Get PDF
    (Abridged) The stellar metallicity, [M/H], may have important implications for planet formation. In particular, Kama et al. proposed that the deficit of refractory elements in the surfaces of some Herbig Ae/Be stars (HAeBes) may be linked to the presence of disk cavities likely caused by Jovian planets that trap the metal-rich content. This work aims to provide a robust test on the previous proposal by analyzing the largest sample of HAeBes with homogeneously derived [M/H] values, stellar, and circumstellar properties. [M/H] values of 67 HAeBes were derived based on observed spectra and Kurucz synthetic models. Statistical analyses were carried out aiming to test the potential relation between [M/H] and the group I sources from the spectral energy distribution (SED) classification by Meeus et al., associated to the presence of cavities potentially carved by giant planets. Our study robustly confirms that group I sources tend to have a lower [M/H] than that of group II HAeBes. A similar analysis involving SED-based transitional disks does not reveal such a relation, indicating that not all processes capable of creating dust holes have an effect on the stellar abundances. We also show that the observed [M/H] differences are not driven by environmental effects. Finally, group I sources tend to have stronger (sub-) mm continuum emission presumably related to the presence of giant planets. Indeed, literature results indicate that disk substructures probably associated to their presence are up to ten times more frequent in group I HAeBes. We provide indirect evidences suggesting that giant planets are more frequent around group I/low [M/H] stars than around the rest of the HAeBes. However, the direct test requires multiple detections of forming planets in their disks, so far limited to the candidate around the metal depleted ([M/H] = -0.35 +- 0.25) group I HAeBe star AB Aur.Comment: 16 pages, 10 figures, 2 tables. Accepted in A&

    Iceline variations driven by protoplanetary disc gaps

    Get PDF
    The composition of forming planets is strongly affected by the protoplanetary disc’s thermal structure. This thermal structure is predominantly set by dust radiative transfer and viscous (accretional) heating and can be impacted by gaps – regions of low dust and gas density that can occur when planets form. The effect of variations in dust surface density on disc temperature has been poorly understood to date. In this work, we use the radiative transfer code MCMax to model the 2D dust thermal structure with individual gaps corresponding to planets with masses of 0.1 MJ –5 MJ and orbital radii of 3, 5, and 10 au. Low dust opacity in the gap allows radiation to penetrate deeper and warm the mid-plane by up to 16 K, but only for gaps located in the region of the disc where stellar irradiation is the dominant source of heating. In viscously heated regions, the mid-plane of the gap is relatively cooler by up to 100 K. Outside of the gap, broad radial oscillations in heating and cooling are present due to disc flaring. These thermal features affect local dust–gas segregation of volatile elements (H2O, CH4, CO2, and CO). We find that icelines experience dramatic shifts relative to gapless models: up to 6.5 au (or 71 per cent) closer to the star and 4.3 au (or 100 per cent) closer to the mid-plane. While quantitative predictions of iceline deviations will require more sophisticated models, which include transport, sublimation/condensation kinetics, and gas–dust thermal decoupling in the disc atmosphere, our results suggest that planet-induced iceline variations represent a potential feedback from the planet on to the composition of material it is accreting
    corecore