11 research outputs found

    Cardiac metabolic compensation to hypertension requires lipoprotein lipase

    No full text
    Fatty acids (FAs) are acquired from free FA associated with albumin and lipoprotein triglyceride that is hydrolyzed by lipoprotein lipase (LpL). Hypertrophied hearts shift their substrate usage pattern to more glucose and less FA. However, FAs may still be an important source of energy in hypertrophied hearts. The aim of this study was to examine the importance of LpL-derived FAs in hypertensive hypertrophied hearts. We followed cardiac function and metabolic changes during 2 wk of angiotensin II (ANG II)-induced hypertension in control and heart-specific lipoprotein lipase knockout (hLpL0) mice. Glucose metabolism was increased in ANG II-treated control (control/ANG II) hearts, raising it to the same level as hLpL0 hearts. FA uptake-related genes, CD36 and FATP1, were reduced in control/ANG II hearts to levels found in hLpL0 hearts. ANG II did not alter these metabolic genes in hLpL0 mice. LpL activity was preserved, and mitochondrial FA oxidation-related genes were not altered in control/ANG II hearts. In control/ANG II hearts, triglyceride stores were consumed and reached the same levels as in hLpL0/ANG II hearts. Intracellular ATP content was reduced only in hLpL0/ANG II hearts. Both ANG II and deoxycorticosterone acetate-salt induced hypertension caused heart failure only in hLpL0 mice. Our data suggest that LpL activity is required for normal cardiac metabolic compensation to hypertensive stress

    Adipose Specific Lipoprotein Lipase Deficiency More Profoundly Affects Brown Than White Fat Biology

    No full text
    Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose specific LpL knockout (ATLO) mice, and compared them with whole body LpL knockout mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75% and 70% in gonadal adipose tissue (GAT), 90% and 80% in subcutaneous (SCAT), and 84% and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, while GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in SCAT and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the gate-keeper for tissue lipid distributio

    Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) and insulin resistance have recently been found to be associated with increased plasma concentrations of apolipoprotein CIII (APOC3) in humans carrying single nucleotide polymorphisms within the insulin response element of the APOC3 gene. To examine whether increased expression of APOC3 would predispose mice to NAFLD and hepatic insulin resistance, human APOC3 overexpressing (ApoC3Tg) mice were metabolically phenotyped following either a regular chow or high-fat diet (HFD). After HFD feeding, ApoC3Tg mice had increased hepatic triglyceride accumulation, which was associated with cellular ballooning and inflammatory changes. ApoC3Tg mice also manifested severe hepatic insulin resistance assessed by a hyperinsulinemic-euglycemic clamp, which could mostly be attributed to increased hepatic diacylglycerol content, protein kinase C-ϵ activation, and decreased insulin-stimulated Akt2 activity. Increased hepatic triglyceride content in the HFD-fed ApoC3Tg mice could be attributed to a ≈ 70% increase in hepatic triglyceride uptake and ≈ 50% reduction hepatic triglyceride secretion

    Cardiomyocyte lipids impair β-adrenergic receptor function via PKC activation

    No full text
    Normal hearts have increased contractility in response to catecholamines. Because several lipids activate PKCs, we hypothesized that excess cellular lipids would inhibit cardiomyocyte responsiveness to adrenergic stimuli. Cardiomyocytes treated with saturated free fatty acids, ceramide, and diacylglycerol had reduced cellular cAMP response to isoproterenol. This was associated with increased PKC activation and reduction of β-adrenergic receptor (β-AR) density. Pharmacological and genetic PKC inhibition prevented both palmitate-induced β-AR insensitivity and the accompanying reduction in cell surface β-ARs. Mice with excess lipid uptake due to either cardiac-specific overexpression of anchored lipoprotein lipase, PPARγ, or acyl-CoA synthetase-1 or high-fat diet showed reduced inotropic responsiveness to dobutamine. This was associated with activation of protein kinase C (PKC)α or PKCδ. Thus, several lipids that are increased in the setting of lipotoxicity can produce abnormalities in β-AR responsiveness. This can be attributed to PKC activation and reduced β-AR levels

    Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity.

    Get PDF
    Free fatty acids (FFAs) suppress appetite when injected into the hypothalamus. To examine whether lipoprotein lipase (LPL), a serine hydrolase that releases FFAs from circulating triglyceride (TG)-rich lipoproteins, might contribute to FFA-mediated signaling in the brain, we created neuron-specific LPL-deficient mice. Homozygous mutant (NEXLPL-/-) mice were hyperphagic and became obese by 16 weeks of age. These traits were accompanied by elevations in the hypothalamic orexigenic neuropeptides, AgRP and NPY, and were followed by reductions in metabolic rate. The uptake of TG-rich lipoprotein fatty acids was reduced in the hypothalamus of 3-month-old NEXLPL-/- mice. Moreover, deficiencies in essential fatty acids in the hypothalamus were evident by 3 months, with major deficiencies of long-chain n-3 fatty acids by 12 months. These results indicate that TG-rich lipoproteins are sensed in the brain by an LPL-dependent mechanism and provide lipid signals for the central regulation of body weight and energy balance

    DGAT1 Expression Increases Heart Triglyceride Content but Ameliorates Lipotoxicity*

    No full text
    Intracellular lipid accumulation in the heart is associated with cardiomyopathy, yet the precise role of triglyceride (TG) remains unclear. With exercise, wild type hearts develop physiologic hypertrophy. This was associated with greater TG stores and a marked induction of the TG-synthesizing enzyme diacylglycerol (DAG) acyltransferase 1 (DGAT1). Transgenic overexpression of DGAT1 in the heart using the cardiomyocyte- specific α-myosin heavy chain (MHC) promoter led to approximately a doubling of DGAT activity and TG content and reductions of ∼35% in cardiac ceramide, 26% in DAG, and 20% in free fatty acid levels. Cardiac function assessed by echocardiography and cardiac catheterization was unaffected. These mice were then crossed with animals expressing long-chain acyl-CoA synthetase via the MHC promoter (MHC-ACS), which develop lipotoxic cardiomyopathy. MHC-DGAT1XMHC-ACS double transgenic male mice had improved heart function; fractional shortening increased by 74%, and diastolic function improved compared with MHC-ACS mice. The improvement of heart function correlated with a reduction in cardiac DAG and ceramide and reduced cardiomyocyte apoptosis but increased fatty acid oxidation. In addition, the survival of the mice was improved. Our study indicates that TG is not likely to be a toxic lipid species directly, but rather it is a feature of physiologic hypertrophy and may serve a cytoprotective role in lipid overload states. Moreover, induction of DGAT1 could be beneficial in the setting of excess heart accumulation of toxic lipids
    corecore