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SUMMARY

Free fatty acids (FFAs) suppress appetite when
injected into the hypothalamus. To examine whether
lipoprotein lipase (LPL), a serine hydrolase that
releases FFAs from circulating triglyceride (TG)-rich
lipoproteins, might contribute to FFA-mediated sig-
naling in the brain, we created neuron-specific LPL-
deficient mice. Homozygous mutant (NEXLPL�/�)
mice were hyperphagic and became obese by
16 weeks of age. These traits were accompanied by
elevations in the hypothalamic orexigenic neuro-
peptides, AgRP and NPY, and were followed by
reductions in metabolic rate. The uptake of TG-rich
lipoprotein fatty acids was reduced in the hypothal-
amus of 3-month-old NEXLPL�/� mice. Moreover,
deficiencies in essential fatty acids in the hypothal-
amus were evident by 3 months, with major defi-
ciencies of long-chain n-3 fatty acids by 12 months.
These results indicate that TG-rich lipoproteins are
sensed in the brain by an LPL-dependentmechanism
and provide lipid signals for the central regulation of
body weight and energy balance.

INTRODUCTION

Substantial evidence indicates the essential role of the central

nervous system (CNS) in the regulation of energy homeostasis,

leading to obesity development (Schwartz and Porte, 2005).

Among the various brain regions involved, the hypothalamus

plays a critical role in integrating neuronal responses to a variety

of peripheral signals to regulate energy balance. In the arcuate

nucleus of the hypothalamus, two groups of neurons, pro-opio-

melanocortin (POMC)-producing neurons and agouti-related

protein (AgRP)-producing neurons, play complementary roles

in regulating food intake, energy expenditure, and body weight

(Sandoval et al., 2008). While the glucose-sensing mechanism
Cell
in POMC neurons and its role in obesity is well defined (Parton

et al., 2007), the mechanism and the locations for lipid/fatty

acid (FA) sensing in the brain are less clear, and how the imbal-

ance of central versus peripheral lipid-sensing contributes to the

development of obesity is poorly understood (Caspi et al., 2007).

FA availability in the hypothalamus is important to the regula-

tion of energy balance, but how the brain regulates the de novo

synthesis versus the transport of FAs into the brain is unclear. In

recent years, studies with the infusion of free fatty acids (FFAs)

into the third ventricle of rodents showed inhibition of food intake

(Obici et al., 2002; Morgan et al., 2004) as well as regulation of

enzymes that are essential to FA oxidation (Obici et al., 2003)

and lipogenesis (Loftus et al., 2000) that affect energy balance

mostly through appetite regulation. The in vivo sources of these

appetite-regulating FAs and the regulatory mechanisms remain

undefined. Furthermore, appetite suppression by FFAs seems

to be contrary to known physiologic appetite regulation such

as starvation (circulating FFAs are increased) and fed state

(FFAs are suppressed). Thus, brain lipids, specifically hypotha-

lamic FAs, might be regulated differently and independently of

the circulating FFAs. Themajor pools of circulating FAs are either

albumin-bound FFAs released by lipolysis from adipose tissue

TG storage pools or FFAs contained within TG-rich lipoproteins

that increase in the blood after meals. A physiologically relevant

model is critically necessary to study whether TG-rich lipopro-

teins could be a major source of FAs in the brain and whether

the regulation of TG-rich lipoprotein metabolism in the brain

affects energy balance.

Lipoprotein lipase (LPL) is a key enzyme that controls the par-

titioning of TG-rich, lipoprotein-derived FAs in peripheral tissues

(Wang and Eckel, 2009). LPL mRNA is also present throughout

the nervous system, including CNS neurons (Goldberg et al.,

1989; Ben Zeev et al., 1990; Bessesen et al., 1993). A number

of functions of LPL in neurons have been suggested (reviewed

in Wang and Eckel, 2009); however, a relevant model is lacking

to study the in vivo function of LPL in the brain. The neuron-

specific, LPL-deficient mouse (NEXLPL�/�) reported here

provides evidence that the regulation of TG-rich lipoprotein

metabolism in the brain impacts both food intake and energy

expenditure and results in obesity.
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Figure 1. Characterization of NEXLPL–/– Mice

(A) Lipoprotein lipase (LPL) mRNA in different brain regions at 3 months (n = 4).

(B) LPL activity in different brain regions at 3 months (n = 3).

(C) Body weight for male and female NEXLPL mice at 6 months.

(D) Body composition and fat mass for NEXLPL mice at 6 months (insert: BAT mass).

(E) Energy balance of NEXLPL�/�mice at 6months. Average daily food intake, respiratory quotient, andmetabolic rate weremeasured in an indirect calorimeter.

(F) Average physical activity as measured by the number of breaks in inferred beams through the 3 day calorimetry experiment (insert: average total physical

activity). n = 6 for (C)–(F). See also Figure S1 and Table S1. The error bars in this figure are SEM.
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RESULTS

NEXLPL–/– Mice Become Obese on a Chow Diet
In 3-month-old NEXLPL�/� mice, LPL mRNA was significantly

reduced in the hypothalamus (50%, p = 0.05), hippocampus

(80%, p = 0.015), and cortex (80%, p < 0.001) (Figure 1A).

However, LPL enzyme activity was reduced only 50% in the

hippocampus and marginally in the hypothalamus and remained

the same for other brain regions examined (Figure 1B). In peri-

pheral tissues, the only change observed was an increase of

LPL mRNA in BAT at 3 months (mechanism unknown, but
106 Cell Metabolism 13, 105–113, January 5, 2011 ª2011 Elsevier In
unlikely a direct effect of genetic modification), with no enzyme

activity changes in the heart, skeletal muscle, WAT, or BAT

(Figures S1A and S1B).

At 6 months, obesity was observed in chow-fed male and

female NEXLPL�/� mice, and female mice showed higher

percent weight gain than male mice (Figure 1C) (38% versus

29%). Although some increase in lean body mass was seen

(consistent with human obesity), most of the weight increase

was fat mass (Figure 1D). Visual inspection of NEXLPL�/�
mice revealed increases in the abdominal and perigonadal

WAT areas and suprascapular BAT (quantified in Figure 1D
c.
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Figure 2. Obesity Development in

NEXLPL+/– and NEXLPL–/– Mice

(A)Weight changes ofNEXLPL+/� andNEXLPL�/�
mice from 6 to 12 months (n = 4 for WT, n = 9 for

NEXLPL+/�, n = 4 for NEXLPL�/�).

(B) Fat mass percentages of NEXLPL+/�mice at 6

and 12months (n = 4 for 6months, n = 4 forWT, n =

9 for NEXLPL+/� at 12 months).

(C) Average food intake for NEXLPL+/� mice at

6 and 12 months (n = 8 for WT, n = 13 for

NEXLPL+/� at 6 months, n = 4 for WT, n = 9 for

NEXLPL+/� at 12 months).

(D) Average respiratory quotient (RQ) for

NEXLPL+/� mice at 6 and 12 months (same n

numbers as in C.)

(E) Average metabolic rate (MR) for NEXLPL+/�
mice at 6 and 12months (same n numbers as in C).

(F) Total 3 day activity during the calorimetry

experiment for NEXLPL+/� mice at 6 months

and 12 months (same n number as in C).

(G) Correlation between total physical activities

versus body fat mass percentage for NEXLPL+/�
mice at 12 months (n = 4 for WT, n = 9 for

NEXLPL+/�).

(H) Food intake increase before obesity in

NEXLPL+/� mice (n = 4 for WT, n = 9 for

NEXLPL+/�, n = 4 for NEXLPL�/�).

(I) Correlation between theweight gain at 46weeks

versus food intake at 30 weeks for NEXLPL+/�
mice (n = 4 for WT, n = 9 for NEXLPL+/�).

(J) Weight changes of NEXLPL�/� and

NEXLPL+/�mice between 8 weeks and 6 months

of age (n = 8 for WT, n = 4 for NEXLPL+/�, n = 8 for

NEXLPL�/�).

(K) Food intake increase before obesity in

NEXLPL�/� mice (same n numbers as in J). The

error bars in this figure are SEM.
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insert). Other organs/tissues appeared to be anatomically

normal. Indirect calorimetric characterization of energy

balance showed no difference in average daily food intake

(Figure 1E) and average respiratory quotient (RQ) between

NEXLPL�/� and WT mice (Figure 1E). However, the average

metabolic rate (MR) was lower in 6-month-old NEXLPL�/�
mice (Figure 1E). Furthermore, NEXLPL�/� mice displayed

a substantial reduction in physical activity (Figure 1F and

insert). NEXLPL�/� mice at 6 months also showed varied

but consistent reductions in LPL mRNA and enzyme activities

in brain regions versus 3 months (Figures S1C and S1D). LPL

mRNA levels seemed to be reduced in both WAT and BAT at

6 months (Figure S1E), but LPL activities in peripheral tissues

were similar to those in 3-month-old NEXLPL�/� mice

(Figure S1F).
Cell Metabolism 13, 105–11
Energy Intake and Energy
Expenditure Are Both Modified
in NEXLPL+/– and Young
NEXLPL–/– Mice
Heterozygous mice (NEXLPL+/�) initially

showed no differences in weight com-

pared to WT mice at 6 months, but varia-

bly developed obesity as they aged

(Figure 2A). The extra weight gain of
12-month-old NEXLPL+/� mice was also fat mass, similar to

NEXLPL�/� mice at 6 months (Figure 2B). Indirect calorimetry

showed no differences in food intake (Figure 2C) and RQ at either

6 or 12 months (Figure 2D). The MRs remained the same at

6 months and were modestly reduced at 12 months (Figure 2E).

There was a large variance in physical activity for both 6- and

12-month-old NEXLPL+/� mice (Figure 2F), and the variance

in the reductions of physical activity at 12 months reflected the

degree of obesity (Figure 2G).

A short period of increased food intake was observed between

the 30th and 32nd weeks (Figure 2H) for NEXLPL+/� mice. Food

intake returned to the level of WT mice at 36 weeks, when the

NEXLPL+/� started to become obese and remained low as the

mice aged and further accumulated fat mass. Of great interest,

the later development of obesity in NEXLPL+/� mice was
3, January 5, 2011 ª2011 Elsevier Inc. 107
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strongly predicted by the earlier increase in food intake at week

30 (Figure 2I). Thus, the development of obesity in NEXLPL+/�
mice followed a two-step time course: a period of hyperphagia

followed by a reduction in MR and physical activity. Obesity

developed at amuch faster pace inNEXLPL�/�mice (Figure 2J),

with additional weight gain observed at 16 weeks. The pattern of

earlier food intake for NEXLPL�/�mice was not as distinctive as

that for NEXLPL+/�, but clearly began before the obesity devel-

oped, as well (Figure 2K).

Plasma metabolites were measured for 3- and 6-month-old

male and female NEXLPL�/� mice. Insulin and leptin levels

were higher in 6-month-old females, but fasting plasma glucose,

FFA, and TG were normal both pre- (3 months) and post-

(6months) obesity (Table S1). At 3months, fasting plasma insulin

was minimally increased in both female and male NEXLPL�/�
versus WT mice, but at 6 months, the fasting insulin and leptin

levels were much less elevated in male than female NEXLPL�/�
mice, despite both male and female NEXLPL�/� mice devel-

oping obesity on similar time courses. For all other comparisons,

there were no clear sex differences observed.

Defect in Uptake and Metabolism of TG-Rich
Lipoproteins in the Hypothalamus of NEXLPL–/– Mice
To address how neuronal LPL-deficient mice process circulating

TG-rich lipoprotein-derived FAs, radiolabeled triolein tracer was

incorporated endogenously into chylomicrons (CMs), and the

labeled CMs were then injected into NEXLPL�/� and WT

mice. Tissue uptake of the TG tracer was measured in various

brain regions as well as peripheral tissues (Figure S2A). In peri-

pheral tissues, BAT and liver had higher amounts of uptake of

TG tracer than heart andWAT. Noteworthy specific brain regions

such as the hypothalamus and hippocampus had amounts of TG

tracer uptake similar to WAT. This clearly indicated that TG-rich

lipoprotein-derived FAs enter the brain, and most importantly,

this uptake was significantly reduced in the hypothalamus of

NEXLPL�/� but not in other brain regions (Figure 3A).

Lipidomic analysis was conducted in the hypothalamus of

3- and 6-month-old NEXLPL�/� and WT mice to assess the

impact of neuronal LPL deficiency on brain lipid metabolism.

Total plasma concentrations of TG and FFA (Table S2) as well

as individual species were similar at 3 and 6 months. These

data resembled those measured in plasma (Table S1). When

normalizing to plasma values, total TG (Figure 3B) was reduced

in the hypothalamus of 3-month-old NEXLPL�/� mice and

remained low at 6 months. One linoleic acid (18:2)-containing

TG molecule (14:0/18:2/16:0) was dramatically reduced in the

hypothalamus of 3-month-old NEXLPL�/� mice (Figure 3C) but

was not changed in plasma (Table S2). Although total FFA levels

were similar in NEXLPL�/� andWTmice at both 3 and 6months

(Figure 3D), reductions in n-3polyunsaturated fatty acids (PUFAs)

were detected (Figure 3E). In addition, an increase in C20:3 n-9

FFA, an additional marker of essential FA deficiency (Smit et al.,

2004), was also seen at 3 months (Figure 3E). The detailed TG

and FFA analysis in the hypothalamus is shown in Table S2.

These data suggest that young NEXLPL�/� mice might have

a specific deficiency in the brain uptake of TG-derived lipids.

This earlier defect seemed to manifest in 12-month-old

NEXLPL�/� mice. There was a trend for the levels of hypotha-

lamic total TG and specific TG molecules to be higher (Figures
108 Cell Metabolism 13, 105–113, January 5, 2011 ª2011 Elsevier In
S2B and S2C); however, total FFA concentrations remained

unchanged, as did the more abundant FFA species (Figure S2D).

Also consistent with data from younger mice, the levels of very-

long-chain PUFAs were all substantially lower in NEXLPL�/�
mice, with dramatic reductions in n-3 PUFAs (Figure 3F). In

addition, the C20:4 n-6-containing TGs were trending higher in

NEXLPL�/�mice (Figure S2E), whereas the C20:4 n-6-contain-

ing diacylglycerol (DG) (Figure S2F), monoacylglycerol (MG)

(Figure S2G), and C20:4 FFA (Figure S2H) species were all lower

or trending lower. Taken together, these results suggest that

NEXLPL�/� mice have a hypothalamic defect in metabolizing

TG into DG,MG, and FFA, andmore importantly, this impairment

seems to be specific for very-long-chain PUFAs.

Key enzymes in the PUFA synthetic pathway were examined

next in both the hypothalamus (Figure 3G) and liver (Figure S2I).

Of interest, none of the desaturases or elongases were different

in the hypothalamus at 3 months, but significant increases were

observed for Fads1 (D-5 desaturase), Elovl 2 (elongase 2), and

stearoyl-CoA desaturase 1 (Scd1) in the hypothalamus of

6-month-old NEXLPL�/� mice, and the elevation in Fads1

expression persisted in NEXLPL�/� mice at 12 months (Fig-

ure S2J). Liver PUFA biosynthetic enzymes were not modified

except for the increase of Elovl2 at 3 months (Figure S2I).

Alterations of Gene Expression in the Hypothalamus
of NEXLPL–/– and NEXLPL+/– Mice
To determine mechanisms by which neuronal LPL deficiency

might modify energy balance and body weight, mRNA levels of

a selected group of genes involved in CNS glucose sensing, lipid

metabolism, energy balance, and body weight regulation were

variably examined in the hypothalamus at 3 and 6 months

(Figures S3A and S3B), and in the hippocampus (Figure S3C)

and cortex (Figure S3D) at 6 months. With the exception of

the mRNAs for sterol regulatory element-binding protein-1c

(Srebp-1c), Srebp-2, carnitine palmitoyltransferase 1c (Cpt1c),

and pyruvate dehydrogenase kinase (Pdk4) in the hypothalamus

and Cpt1c, AMP-activated protein kinase alpha 2, and uncou-

pling protein 2 in cortex, no other changes were seen in

6-month-old NEXLPL�/� mice. At 3 months, some increases

in medium-chain acyl-CoA dehydrogenase and Pdk4 mRNAs

were seen in the hypothalamus. These modest changes all

appeared to be secondary to obesity rather than causative.

We then turned to genes in the pathway of the melanocortin-

4/-3 receptor (Mc4r/3r) in the hypothalamus, known to play

a pivotal role in maintaining energy homeostasis. Specifically,

the mRNAs of the orexigenic neuropeptides AgRP and NPY

genes were substantially increased in the hypothalamus of

obese NEXLPL�/� mice at 6 months (Figure 4A), but another

orexigenic neuropeptide melanin-concentrating hormone and

the anorexigenic neuropeptide POMC were not affected. AgRP

and NPY gene expression was also measured at 15 days and

3 months of age in the hypothalamus of NEXLPL�/� mice. At

P15, there was no change in AgRP/NPY mRNA in NEXLPL�/�
mice (data not shown), strongly suggesting that the modification

of AgRP gene expression in adult mice was not developmental.

However, interestingly, at 3 months and before the onset of

obesity, AgRP levels were even more elevated in NEXLPL�/�
mice (3.1-fold at 3 months versus 2.2-fold at 6 months) (Fig-

ure 4A). We also examined whether AgRP gene expression
c.
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Figure 3. Brain Lipid Metabolism in NEXLPL–/– Mice at 3, 6, and 12 Months

(A) Reduction of TG-rich, lipoprotein-derived TG/FA uptake in the hypothalamus of NEXLPL�/� mice at 3 months (n = 7 for WT and n = 6 for NEXLPL�/�).

(B) Total TG concentrations in the hypothalamus of 3- and 6-month-old NEXLPL�/� mice.

(C) TG (18:2/14:0/16:0) in the hypothalamus of 3- and 6-month-old NEXLPL�/� mice.

(D) Total FFA concentrations in the hypothalamus of 3- and 6-month-old NEXLPL�/� mice.

(E) Deficiency of n-3 PUFAs in 3-month-old and 6-month-old NEXLPL�/� mice. n-3 index is percentage of all n-3 PUFAs in total FFA.

(F) n-3 PUFA deficiency in the hypothalamus of 12-month-old NEXLPL�/� mice (n = 2 for WT, n = 3 for NEXLPL�/�).

(G) PUFA biosynthetic enzyme pathway gene expression levels in the hypothalamus of 3- and 6-month-old NEXLPL�/�mice (n = 4). In all panels, n = 6 for WT;

n = 4 for NEXLPL�/� for (B)–(E). Lipid levels in (A)–(E) are reported with hypothalamic lipid levels normalized to plasma levels. See also Figure S2 and Table S2.

The error bars in this figure are SEM.
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predicted obesity in NEXLPL+/�mice (Figure 4B). Indeed, AgRP

gene expression was only somewhat higher in NEXLPL�/�mice

at 3 months (1.5-fold), but was substantially increased at

6 months (7.7-fold, preobese and before the increases in food

intake in these mice) and much less increased at 9 months

(1.9-fold, after the increase in food intake was gone). AgRP is

a natural antagonist of both Mc3r and Mc4r receptors. It was

interesting to note that Mc3r but not Mc4r mRNA was increased
Cell
nearly 2-fold by 6 months in NEXLPL�/� mice, and Mc3r was

increased before the onset of obesity and remained elevated

through the development of obesity (Figure 4C).

DISCUSSION

Previously, our lab demonstrated that LPL was expressed and

synthesized in neurons in different brain regions (Eckel and
Metabolism 13, 105–113, January 5, 2011 ª2011 Elsevier Inc. 109
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Figure 4. Gene Expression in NEXLPL–/–Mice Pre-

and Post-Obesity Development

(A) Neuropeptide gene expression in the hypothalamus of

NEXLPL�/� mice at 3 and 6 months.

(B) AgRP andNPY gene expression in the hypothalamus of

NEXLPL+/� mice at 3, 6, and 9 months.

(C) Melenocortin-3 and -4 receptor gene expression in the

hypothalamus of NEXLPL�/� mice at 3 and 6 months.

n = 4 for each group of mice. See also Figure S3. The error

bars in this figure are SEM.
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Robbins, 1984; Bessesen et al., 1993; Goldberg et al., 1989).

Moreover, we hypothesized that LPL in the brain could modulate

appetite (Eckel and Robbins, 1984). LPL contributes in a major

way to TG-rich lipoprotein metabolism, tissue-specific fuel

delivery and utilization, and many aspects that relate to energy

balance, insulin action, and body weight regulation; however,

these roles have all been attributed to LPL in peripheral tissues.

Some evidence, however, suggests a role of LPL in the brain.

Mice heterozygous for generalized LPL deficiency have an

age-dependent increase in the ratio of fat mass to lean mass

(Chen et al., 2008), and although humans with homozygous

LPL deficiency are typically not obese, patients with hetero-

zygous LPL deficiency can be overweight or obese (Babirak

et al., 1989; Julien et al., 1997). In these cases, LPL is absent

or reduced in all tissues of the body, not just the neuron. We

now have a neuronal-specific, LPL-deficient model to directly

evaluate the in vivo function of LPL in the brain.

NEXLPL�/� mice developed obesity by 16 weeks on a chow

diet, and the extent of obesity was themost severe among all ex-

isting LPL-deficient mouse models. This result indicates an

important function of LPL in CNS neurons and the potential

role of TG-rich lipoprotein metabolism as a mechanism of CNS

regulation of energy balance and body weight. Furthermore, in

most of the other genetically modified obesity mouse models,

only male mice display the pronounced phenotype. In

NEXLPL�/� mice, both males and females developed obesity

at the same rate, with gender differences observed only in the

plasma leptin and insulin levels at 6 months and the extra

percentage of weight gain.

Both NEXLPL�/� and NEXLPL+/� mice developed obesity

in a two-step time course with an increase in energy intake

preceding the reduction in energy expenditure. Although the

period of hyperphagia was not as well defined in younger

NEXLPL�/� mice, we believe that this was mostly due to the

faster rate of obesity development in combination with vari-

ances between mice. Because both energy intake and energy

expenditure were modified in NEXLPL mice, it was important

to note the substantial increases in AgRP and NPY gene
110 Cell Metabolism 13, 105–113, January 5, 2011 ª2011 Elsevier Inc.
expression before the onset of obesity and

the persistent increase of these neuropeptides,

albeit at a lower level, after obesity developed.

A number of studies have indicated that upre-

gulation of AgRP can increase energy intake

as well as reduce energy expenditure (Small

et al., 2001, 2003; Kaelin et al., 2004; Gropp

et al., 2005; Semjonous et al., 2009). These

reports provide a putative mechanism to
explain why food intake and energy expenditure were both

modified in NEXLPL mice.

The observation that the increase of AgRP gene expression

was greater in preobese mice (NEXLPL�/� at 3 months and

NEXLPL+/� at 6 months) than in obese mice (NEXLPL�/� at

6 months and NEXLPL+/� at 9 months) is of further interest.

The initial higher levels of AgRP mRNA in the hypothalamus

seemed to predict the subsequent increase in food intake to

follow. Then, after the period of hyperphagia subsided and

obesity developed, AgRP gene expression was reduced but still

elevated. These results suggest that there are signals in neuronal

LPL-deficient mice that can greatly upregulate the AgRP

neurons early on, but these neurons are still responsive to

some potential secondary signals that are likely to be compensa-

tory in nature. It will be important for future studies to identify how

neuron-specific reductions in LPL gene expression result in such

pattern of regulation in AgRP neurons.

Besides the increases in AgRP gene expression, there was

also a �90% increase in expression of Mc3r but no change in

the expression of Mc4r in both NEXLPL�/� and NEXLPL+/�
mice, and this increase in Mc3r expression existed before the

onset of obesity in NEXLPL�/� mice. Of note, AgRP acts as

natural antagonist at the level of both Mc3 and Mc4 receptors.

The increased expression of Mc3r could very well be a compen-

satory effect of the substantially increased gene expression of

AgRP in the hypothalamus, which seems to have no effect on

Mc4r expression. Compared to the important role of the Mc4r

in regulating food intake and the CNS regulation of glucose

homeostasis, the biological function of the Mc3r is not well es-

tablished (Bolze and Klingenspor, 2009; Lee and Wardlaw,

2007). Mc3r is often colocalized with Mc4r and in some cases

might share redundant functions with Mc4r, but accumulating

data show that its precise function in obesity, cachexia, and

related feeding behaviors might involve unique signaling path-

ways and/or regulatory mechanisms. Our mouse might prove

to be the model to uncover the complex role of Mc3r in the regu-

lation of energy balance and body weight. Furthermore, the

selective activation of AgRP versus POMC neuronal activity in
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the setting of no change in plasma glucose provides more

evidence to support that AgRP neurons (and Mc3r) are more

sensitive to lipid-derived signals in the brain than POMC neurons

(and Mc4r) that preferentially sense glucose.

Considering the key role of LPL in peripheral tissues in

regulating TG-rich lipoprotein-derived lipids for storage and/or

oxidation, it is plausible that LPL contributes to the regulation

of TG-rich lipoprotein metabolism in the brain. This is exactly

what we have found in NEXLPL�/� mice. Despite the potential

requirement of active transport of lipid molecules across the

blood-brain barrier, our data suggest that brain tissue is not

only capable of taking up lipids derived from TG-rich lipopro-

teins, but also this process is LPL dependent. Importantly, only

PUFA metabolism seemed to be affected by neuronal LPL defi-

ciency. This raises the intriguing possibility that LPL might play

a more specific role in the regulation of the turnover of particular

lipid species in the murine brain.

PUFAs are usually obtained from the diet or synthesized in the

liver by elongation and desaturation of diet-derived 18:2 or 18:3

FFAs. Various elongase and desaturase enzymes have been

found in the brain, where their activities do not appear to be

modified by diet-induced obesity (Igarashi et al., 2007). In

NEXLPL�/� mice, however, in addition to the earlier deficiency

of a TG and n-3 PUFA, we also observed an increase in both

desaturase and elongase gene expression in the hypothalamus

but not in liver. A plausible interpretation is that an initial

LPL-dependent defect in the hypothalamic uptake of the essen-

tial dietary TG and FAs in NEXLPLmice is followed by a compen-

satory upregulation of enzymes in the PUFA biosynthetic

pathway. As the NEXLPL�/�mice age and becomemore obese,

the dramatic drop in n-3 PUFA content in the hypothalamus indi-

cates either a slower production of n-3 PUFAs and/or a faster

rate of n-3 PUFA turnover.

Recently, long-chain PUFA have been shown to play a key

role in the control of body fat by regulating the expression of

lipid- and lipoprotein-related genes (Jump, 2008; Sampath and

Ntambi, 2004) as well as key neuropeptides that are involved in

regulating energy balance and body weight (Wang et al., 2002;

Dziedzic et al., 2007). Our results indicate that LPL might be

regulating the availability of free long-chain PUFAs in the brain.

Thus, the observed decrease in long-chain PUFAs in the hypo-

thalamus of NEXLPL mice strongly suggests that the brain of

these animals is unable to sense circulating lipoprotein-associ-

ated FAs and consequently increases the expression of orexi-

genic neuropeptides such as AgRP/NPY. Of interest, the AgRP

gene has a 21 nucleotide sequence that is 100% identical to

the sequence found in the promoter of the neuron-derived

orphan receptor-1 (NOR-1) (Brown et al., 2001), and NOR-1

action is preferentially inhibited by n-6 and n-3 FAs (Maxwell

and Muscat, 2006). Notably, the fact that the lipid metabolism

in the liver of NEXLPL mice remains unchanged indicates that

the reduction in long-chain PUFAs in the hypothalamus is

secondary to an LPL-related defect in the CNS.

In summary, neuron-specific reductions in LPL gene expres-

sion in mice result in severe obesity. This phenotype appears

to be biphasic, with a period of increased food intake followed

by more sustained reductions in physical activity and MR.

This progressive change in energy balance may be due to the

LPL-dependent decrease in PUFA levels and increased AgRP/
Cell
NPY gene expression in the hypothalamus. Overall, our study

opens the door to a previously undiscovered CNS pathway

that regulates energy balance and body weight.

EXPERIMENTAL PROCEDURES

Generation of NEXLPL–/– and NEXLPL+/– Mice

In brief, the CNS neuronal-specific LPL-depleted mice (NEXLPL�/�) were

generated by crossing the LPL loxP mice (Augustus et al., 2004) with trans-

genic mice having the brain-specific expression of cre recombinase driven

by the regulatory sequences of NEX, a gene that encodes a neuronal basic

helix-loop-helix (bHLH) protein (Goebbels et al., 2006).

LPL Activity Assay

After a 4 hr fast, mice were anesthetized with an i.p. administration of Avertin

(2,2,2-tribromoethanol, 250 mg/kg). Tissues were dissected and assayed

immediately. Heparin-releasable LPL activity was measured in brain regions

and in peripheral tissues as previously described (Jensen et al., 2008). LPL

activity was expressed as nmoles of FFA per minute per gram tissue.

Measurement of Body Weight, Body Composition, and Plasma

Metabolic Parameters

Body weight was monitored on a weekly basis for individualized caged mice.

Body composition was measured on anesthetized mice by dual-energy X-ray

absorptiometry using a mouse densitometer (PIXImus2, Lunar Corp.; Madi-

son, WI). Plasma samples were collected after a 4 hr fast, and metabolic

parameters were measured as previously described (Wang et al., 2009).

Indirect Calorimetry and Physical Activity Measurements

An open-ended indirect calorimetry system coupled with Columbus Instru-

ments Opto M3 multichannel activity monitor was used to measure average

daily food intake, oxygen consumption (O2) and carbon dioxide (CO2) produc-

tion in mice to calculate MR and RQ, and physical activity as described in

Supplemental Experimental Procedures.

Quantitative Real-Time PCR

Different regions of the brain were collected from 6-month-old anesthetized

mice after a 4 hr fast, flash frozen, and stored at �80�C until processing. Total

RNA was extracted from homogenized tissue using both TRIzol reagent

(Invitrogen) and RNeasy Mini Kit (QIAGEN). Reverse transcription was

performed using 1 mg total RNA with iScript cDNA synthesis kit (Bio-Rad).

Quantitative PCR was performed using primer sets for genes of interest and

three reference genes and iQ Supermix or iQ SYBR Supermix (Bio-Rad)

following the manufacturer’s protocols.

Lipidomic Analyses of Brain Tissues

Mice were fasted for 4 hr, anesthetized, and decapitated, and brains were

quick-frozen in 2-methylbutane at �40�C and then stored at �80�C until

further processing. Brain regions were punched from the frozen brains using

cryo-cut and cylindrical brain punchers (Fine Science Tools; Foster City,

CA). Frozen punches were weighed and homogenized in methanol containing

the following internal standards: d8-arachidonic acid, d8-2-arachidonoyl

glycerol (Cayman Chemical; Ann Arbor, MI), diheptadecanoin, trinonadece-

noin (Nu-Chek Prep; Elysian, MN). Lipids were analyzed as previously

described (Astarita et al., 2009). Briefly, lipids were extracted with chloroform

(2 vol) and washed with water (1 vol). Organic phases were collected and

dried under liquid nitrogen. Lipids were reconstituted in chloroform/methanol

(1:4, vol/vol) for liquid chromatography/mass spectrometry (LC/MS) analyses.

Lipid identification and quantification are described in the Supplemental

Experimental Procedures.

Preparation of Radiolabeled CMs and In Vivo Uptake

Endogenously radiolabeled CMs were prepared as described in the Supple-

mental Experimental Procedures and then injected into 4 hr fasted mice via

the tail vein at time 0, with each mouse receiving 2 3 106 dpm of [3H]triolein-

labeled CMs. Blood was collected at 0.5, 5, and 15 min after injection. At

15 min, hearts were perfused with cold PBS and tissues were harvested, flash
Metabolism 13, 105–113, January 5, 2011 ª2011 Elsevier Inc. 111
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frozen in liquid nitrogen, and stored at �80�C until use. Radioactivity was

determined in 10 ml plasma and 100 ml tissue homogenate on a LS 6500 multi-

purpose scintillation counter (Beckman Coulter; Brea, CA). Tissue uptake of

the radiolabeled triolein in CMs was normalized per gram of tissue and then

normalized to plasma radioactivity at 30 s (dpm/ml) for each mouse.

Statistical Analyses

Results are presented as mean ± SEM. The error bars in all figures are SEM.

t tests were performed using SigmaStat 2.03 (San Rafel, CA). A p < 0.05

was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Supplemental References, three figures, and one table and can be found

with this article online at doi:10.1016/j.cmet.2010.12.006.
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