23 research outputs found

    Halogen effects on ordering and bonding of CH<sub>3</sub>NH<sub>3</sub> <sup>+</sup> in CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> (X = Cl, Br, I) hybrid perovskites:a vibrational spectroscopic study

    Get PDF
    This study reports Raman and infrared spectra of hybrid organic–inorganic MAPbX<sub>3</sub> perovskites (MA = CH<sub>3</sub>NH<sub>3</sub>, X = Cl, Br, I) and their mixed-halide derivatives. Raman spectra were recorded at three laser wavelengths (514, 785, and 1064 nm) under on- and off-resonance conditions, as well as at room temperature and 100 K. The use of different excitation wavelengths allowed the unambiguous acquisition of “true” Raman spectra from the perovskites, without degradation or photoinduced structural changes. Low-frequency PbX vibrational modes were thoroughly identified by comparison of Raman and far-IR results. Red Raman frequency shifts for almost all MA vibrations from 200 to 3200 cm<sup>–1</sup>, and particularly intense for the torsional mode, were observed toward heavy halide derivatives, indicative of strengthening the interaction between halides and the organic cation inside the inorganic cage. Different MA–X bonding schemes are evidenced by torsional mode pairs emerging in the orthorhombic phase. MAPbBr<sub>3</sub> was further characterized by variable temperature Raman measurements (100–295 K). Broadening of the MA rocking mode slightly above the tetragonal I to II phase transition is connected with disorder of the MA cation. Our results advance the understanding of perovksite materials properties (ferroelectric domain formation, anomalous hysteresis) and their use as efficient light absorbers in solar cells

    The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites

    Get PDF
    Tetrahedrites are promising p-type thermoelectric materials for energy recovery. We present here the first investigation of the structure and thermoelectric properties of copper-rich tetrahedrites, Cu12+xSb4S13 (0 0 consist of two tetrahedrite phases. In-situ neutron diffraction data demonstrate that on heating, the two tetrahedrite phases coalesce into a single tetrahedrite phase at temperatures between 493 and 553 K, and that this transition shows marked hysteresis on cooling. Our structural data indicate that copper ions become mobile above 393 K. Marked changes in the temperature dependence of the electrical and thermal transport properties of the copper-rich phases occur at the onset of copper mobility. Excess copper leads to a significant reduction in the total thermal conductivity, which for the nominal composition Cu14Sb4S13 reaches a value as low as 0.44 W m-1K-1 at room temperature, and to thermoelectric properties consistent with phonon liquid electron crystal (PLEC) behaviour

    A Silanol-Functionalized Polyoxometalate with Excellent Electron Transfer Mediating Behavior to ZnO and TiO 2 Cathode Interlayers for Highly Efficient and Extremely Stable Polymer Solar Cells

    Get PDF
    Combining high efficiency and long lifetime under ambient conditions still poses a major challenge towards commercialization of polymer solar cells. Here we report a facile strategy that can simultaneously enhance the efficiency and temporal stability of inverted photovoltaic architectures. Inclusion of a silanol-functionalized organic–inorganic hybrid polyoxometalate derived from a PW9O34 lacunary phosphotungstate anion, namely (nBu4N)3[PW9O34(tBuSiOH)3], significantly increases the effectiveness of the electron collecting interface, which consists of a metal oxide such as titanium dioxide or zinc oxide, and leads to a high efficiency of 6.51% for single-junction structures based on poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:IC60BA) blends. The above favourable outcome stems from a large decrease in the work function, an effective surface passivation and a decrease in the surface energy of metal oxides which synergistically result in the outstanding electron transfer mediating capability of the functionalized polyoxometalate. In addition, the insertion of a silanol-functionalized polyoxometalate layer significantly enhances the ambient stability of unencapsulated devices which retain nearly 90% of their original efficiencies (T90) after 1000 hours

    Synthesis, crystal structure and luminescence of [(CH<sub>3</sub>)<sub>3</sub>S]<sub>2</sub>ZrCl<sub>6</sub>

    No full text
    The current work reports on the synthesis, crystal structure and optoelectronic properties of (Me3S)2ZrCl6, prepared by reacting the solid precursors (Me3S)Cl and ZrCl4 in pyrex tubes at 150 °C under vacuum. According to X-ray powder diffraction and Rietveld analysis, (Me3S)2ZrCl6 crystallizes in the cubic space group Pa-3 (No. 205) with a = 12.4664(1) Å. The crystal structure consists of isolated trigonal pyramidal trimethylsulfonium cations and octahedral [ZrCl6]2- anions with weak hydrogen bonds among them and no signs of structural disorder. This 0D-material is stable in air and dissolves in water and dimethylformamide. Raman spectroscopy shows characteristic vibrational modes for the organic and inorganic moieties over the frequency range of 5–3200 cm−1. UV-Vis spectroscopy reveals a large band gap of 5.1 eV and a broadband luminescence with emission maximum at 465 nm in the solid state. The luminescent properties of (Me3S)2ZrCl6 are discussed and compared with those of similar inorganic or metal-organic compounds.</p

    The Influence of Mobile Copper Ions on the Glass-Like Thermal Conductivity of Copper-Rich Tetrahedrites

    No full text
    International audienceTetrahedrites are promising p-type thermoelectric materials for energy recovery. We present here the first investigation of the structure and thermoelectric properties of copper-rich tetrahedrites, Cu12+xSb4S13 (0 0 consist of two tetrahedrite phases. In situ neutron diffraction data demonstrate that on heating, the two tetrahedrite phases coalesce into a single tetrahedrite phase at temperatures between 493 and 553 K and that this transition shows marked hysteresis on cooling. Our structural data indicate that copper ions become mobile above 393 K. Marked changes in the temperature dependence of the electrical and thermal transport properties of the copper-rich phases occur at the onset of copper mobility. Excess copper leads to a significant reduction in the total thermal conductivity, which for the nominal composition Cu14Sb4S13 reaches a value as low as 0.44 W m(-1) K-1 at room temperature, and to thermoelectric properties consistent with phonon liquid electron crystal (PLEC) behavior
    corecore