128 research outputs found

    A new xantphos-type ligand and its gold(I) complexes: Synthesis, structure, luminescence

    Get PDF
    A novel xantphos analog diphosphine ligand, 9,9-dimethyl-4,5-bis(diphenylphosphinomethyl)-9H-xanthene (X(CP)2), with methylene groups inserted between the xanthene skeleton and the two diphenylphosphine units, has been synthesized. A two-coordinate and a three-coordinate gold(I) complex of the ligand, [Au2Cl2(X(CP)2)] and [AuCl(X(CP)2)], have been prepared and studied by X-ray diffraction, NMR and optical spectroscopy. In the solid state, [AuCl(X(CP)2)] adopts a highly ordered structure with a planar xanthene skeleton that faces another plane composed of two phenyl rings and the AuCl moiety. The structure of [Au2Cl2(X(CP)2)] is much less regular, the two P–Au–Cl vectors point to the opposite sides of the folded xanthene backbone. The exchange-broadened resonances in the NMR spectra of [AuCl(X(CP)2))] indicate that this complex exists as a mixture of various chemical species and/or conformers in solution. In contrast, the NMR spectra of [Au2Cl2(X(CP)2)] exclude any medium-range exchange processes. Aurophilic interactions are absent in both X(CP)2 complexes. X(CP)2, as well as its two gold complexes, is phosphorescent in the solid state; the complexes emit at higher wavelengths and with longer lifetimes than the free ligand

    The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites

    Get PDF
    Tetrahedrites are promising p-type thermoelectric materials for energy recovery. We present here the first investigation of the structure and thermoelectric properties of copper-rich tetrahedrites, Cu12+xSb4S13 (0 0 consist of two tetrahedrite phases. In-situ neutron diffraction data demonstrate that on heating, the two tetrahedrite phases coalesce into a single tetrahedrite phase at temperatures between 493 and 553 K, and that this transition shows marked hysteresis on cooling. Our structural data indicate that copper ions become mobile above 393 K. Marked changes in the temperature dependence of the electrical and thermal transport properties of the copper-rich phases occur at the onset of copper mobility. Excess copper leads to a significant reduction in the total thermal conductivity, which for the nominal composition Cu14Sb4S13 reaches a value as low as 0.44 W m-1K-1 at room temperature, and to thermoelectric properties consistent with phonon liquid electron crystal (PLEC) behaviour

    Halogen effects on ordering and bonding of CH<sub>3</sub>NH<sub>3</sub> <sup>+</sup> in CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> (X = Cl, Br, I) hybrid perovskites:a vibrational spectroscopic study

    Get PDF
    This study reports Raman and infrared spectra of hybrid organic–inorganic MAPbX<sub>3</sub> perovskites (MA = CH<sub>3</sub>NH<sub>3</sub>, X = Cl, Br, I) and their mixed-halide derivatives. Raman spectra were recorded at three laser wavelengths (514, 785, and 1064 nm) under on- and off-resonance conditions, as well as at room temperature and 100 K. The use of different excitation wavelengths allowed the unambiguous acquisition of “true” Raman spectra from the perovskites, without degradation or photoinduced structural changes. Low-frequency PbX vibrational modes were thoroughly identified by comparison of Raman and far-IR results. Red Raman frequency shifts for almost all MA vibrations from 200 to 3200 cm<sup>–1</sup>, and particularly intense for the torsional mode, were observed toward heavy halide derivatives, indicative of strengthening the interaction between halides and the organic cation inside the inorganic cage. Different MA–X bonding schemes are evidenced by torsional mode pairs emerging in the orthorhombic phase. MAPbBr<sub>3</sub> was further characterized by variable temperature Raman measurements (100–295 K). Broadening of the MA rocking mode slightly above the tetragonal I to II phase transition is connected with disorder of the MA cation. Our results advance the understanding of perovksite materials properties (ferroelectric domain formation, anomalous hysteresis) and their use as efficient light absorbers in solar cells

    A Silanol-Functionalized Polyoxometalate with Excellent Electron Transfer Mediating Behavior to ZnO and TiO 2 Cathode Interlayers for Highly Efficient and Extremely Stable Polymer Solar Cells

    Get PDF
    Combining high efficiency and long lifetime under ambient conditions still poses a major challenge towards commercialization of polymer solar cells. Here we report a facile strategy that can simultaneously enhance the efficiency and temporal stability of inverted photovoltaic architectures. Inclusion of a silanol-functionalized organic–inorganic hybrid polyoxometalate derived from a PW9O34 lacunary phosphotungstate anion, namely (nBu4N)3[PW9O34(tBuSiOH)3], significantly increases the effectiveness of the electron collecting interface, which consists of a metal oxide such as titanium dioxide or zinc oxide, and leads to a high efficiency of 6.51% for single-junction structures based on poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:IC60BA) blends. The above favourable outcome stems from a large decrease in the work function, an effective surface passivation and a decrease in the surface energy of metal oxides which synergistically result in the outstanding electron transfer mediating capability of the functionalized polyoxometalate. In addition, the insertion of a silanol-functionalized polyoxometalate layer significantly enhances the ambient stability of unencapsulated devices which retain nearly 90% of their original efficiencies (T90) after 1000 hours

    Progress on lead-free metal halide perovskites for photovoltaic applications: a review

    Get PDF
    ABSTRACT: Metal halide perovskites have revolutionized the field of solution-processable photovoltaics. Within just a few years, the power conversion efficiencies of perovskite-based solar cells have been improved significantly to over 20%, which makes them now already comparably efficient to silicon-based photovoltaics. This breakthrough in solution-based photovoltaics, however, has the drawback that these high efficiencies can only be obtained with lead-based perovskites and this will arguably be a substantial hurdle for various applications of perovskite-based photovoltaics and their acceptance in society, even though the amounts of lead in the solar cells are low. This fact opened up a new research field on lead-free metal halide perovskites, which is currently remarkably vivid. We took this as incentive to review this emerging research field and discuss possible alternative elements to replace lead in metal halide perovskites and the properties of the corresponding perovskite materials based on recent theoretical and experimental studies. Up to now, tin-based perovskites turned out to be most promising in terms of power conversion efficiency; however, also the toxicity of these tin-based perovskites is argued. In the focus of the research community are other elements as well including germanium, copper, antimony, or bismuth, and the corresponding perovskite compounds are already showing promising properties. GRAPHICAL ABSTRACT: [Image: see text
    corecore