233 research outputs found

    The Role of NCAA Division I University Athletic Departments in the Transition of Their Career-Ending Injured Athletes Out of Sports

    Get PDF
    The NCAA and member institutions claim the responsibility to support and protect collegiate athletes with a priority on their well-being (NCAA, 2014). Although the NCAA provides financial assistance to selected career-ending injured athletes, university athletic departments define the assistance they offer their athletes who obtain career-ending injuries before their athletic eligibility is up (NCAA, 2014). Therefore, there are no universal policies, procedures, or standards in place to ensure that each injured athlete’s well-being is supported and protected during this traumatic life event (Walsh, 2013). Due to the lack of knowledge on written policies and procedures enforced by athletic departments when an athlete sustains a career-ending injury (Rohrs & Paule-Koba, 2014), this research study investigated the current written policies and procedures related to handling the situation and transition of an athlete obtaining a career-ending injury enforced in the 2014-2015 student-athlete handbooks of 23 Division I NCAA university athletic departments from the B1G and MAC conferences. Using thematic textual analytic procedures (Braun & Clarke, 2006), findings revealed written policies used to guide the majority of NCAA Division I athletic departments’ handling of athletes with career-ending injuries were inadequate, and discovered scarce, inconsistent written procedures enforcing adherence to these policies. The majority of written policies focused on the renewal and non-renewal of athletic aid. Findings implied there is more the NCAA and its institutions can do to fulfill their mission in providing career-ending injured collegiate athletes with consistent protection and support for their overall well-being during their transition out of sport. Implications included increased mandates enforced by the NCAA and educating sport administrators, coaches, and athletes on the transitional process out of competitive sports due to a career-ending injury. Keywords: career-ending injury, college athletics, sport administration, sport retiremen

    A Proposal for Integrated Efficacy-to-Effectiveness (E2E) Clinical Trials

    Get PDF
    We propose an “efficacy-to-effectiveness” (E2E) clinical trial design, in which an effectiveness trial would commence seamlessly upon completion of the efficacy trial. Efficacy trials use inclusion/exclusion criteria to produce relatively homogeneous samples of participants with the target condition, conducted in settings that foster adherence to rigorous clinical protocols. Effectiveness trials use inclusion/exclusion criteria that generate heterogeneous samples that are more similar to the general patient spectrum, conducted in more varied settings, with protocols that approximate typical clinical care. In E2E trials, results from the efficacy trial component would be used to design the effectiveness trial component, to confirm and/or discern associations between clinical characteristics and treatment effects in typical care, and potentially to test new hypotheses. An E2E approach may improve the evidentiary basis for selecting treatments, expand understanding of the effectiveness of treatments in subgroups with particular clinical features, and foster incorporation of effectiveness information into regulatory processes.National Center for Research Resources (U.S.) (Grant UL1 RR025752)National Center for Advancing Translational Sciences (U.S.) (Grant UL1 TR000073

    Drug development for neglected diseases: a deficient market and a public-health policy failure.

    Get PDF
    There is a lack of effective, safe, and affordable pharmaceuticals to control infectious diseases that cause high mortality and morbidity among poor people in the developing world. We analysed outcomes of pharmaceutical research and development over the past 25 years, and reviewed current public and private initiatives aimed at correcting the imbalance in research and development that leaves diseases that occur predominantly in the developing world largely unaddressed. We compiled data by searches of Medline and databases of the US Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products, and reviewed current public and private initiatives through an analysis of recently published studies. We found that, of 1393 new chemical entities marketed between 1975 and 1999, only 16 were for tropical diseases and tuberculosis. There is a 13-fold greater chance of a drug being brought to market for central-nervous-system disorders or cancer than for a neglected disease. The pharmaceutical industry argues that research and development is too costly and risky to invest in low-return neglected diseases, and public and private initiatives have tried to overcome this market limitation through incentive packages and public-private partnerships. The lack of drug research and development for "non-profitable" infectious diseases will require new strategies. No sustainable solution will result for diseases that predominantly affect poor people in the South without the establishment of an international pharmaceutical policy for all neglected diseases. Private-sector research obligations should be explored, and a public-sector not-for-profit research and development capacity promoted

    Innovation and Access to Medicines for Neglected Populations: Could a Treaty Address a Broken Pharmaceutical R&D System?

    Get PDF
    As part of a cluster of articles leading up to the 2012 World Health Report and critically reflecting on the theme of “no health without research,” Suerie Moon and colleagues argue for a global health R&D treaty to improve innovation in new medicines and strengthening affordability, sustainable financing, efficiency in innovation, and equitable health-centered governance

    Delivery systems made of natural-origin polymers for tissue engineering and regenerative medicine applications

    Get PDF
    There is an emergent need in the development of more specific and effective therapeutic agent carriers to help on the regeneration of a plethora of tissues. The ultimate aim of bioactive factors delivery systems development is to improve the human health with the fewest possible adverse reactions. While there have been many polymeric scaffolds and matrices with different forms and compositions developed to load and deliver bioactive factors, the delivery strategy should be established based on the type of molecules to deliver and mechanisms to control their release. As most bioactive factors such as proteins and genes are water-soluble, natural polymers are more favored than synthetic ones for this purpose. A core-shell structuring of biomaterials (in the cases of particles or fibers) where water-based polymers being placed in the inner core part may be the most common design principal to secure bioactive factors during the processing of synthetic drug delivery scaffolds.(undefined)info:eu-repo/semantics/submittedVersio

    Identifying viable regulatory and innovation pathways for regenerative medicine:A case study of cultured red blood cells

    Get PDF
    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5–10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field
    corecore