584 research outputs found

    The Gaia-LSST Synergy

    Full text link
    We discuss the synergy of Gaia and the Large Synoptic Survey Telescope (LSST) in the context of Milky Way studies. LSST can be thought of as Gaia's deep complement because the two surveys will deliver trigonometric parallax, proper-motion, and photometric measurements with similar uncertainties at Gaia's faint end at r=20r=20, and LSST will extend these measurements to a limit about five magnitudes fainter. We also point out that users of Gaia data will have developed data analysis skills required to benefit from LSST data, and provide detailed information about how international participants can join LSST.Comment: Presented at "The Milky Way Unravelled by Gaia", Barcelona, Dec 1-5, 2014; 7 pages, 1 color figur

    Risks and rewards: balancing costs and benefits of predator avoidance in a fiddler crab

    Get PDF
    The decision to take risks in the presence of a predator involves complex trade-offs between immediate survival and future reproduction. Individuals may gain fitness advantages if they are able to optimally alter their risk-taking strategies depending on the differential costs and benefits of risky behaviours across contexts. Male fiddler crabs (Austruca mjoebergi) exhibited a higher propensity to take risks in the presence of a female compared with conspecifics that were not presented with a female during both mating and nonmating periods. Contrary to predictions, however, risk-taking behaviour did not differ between mating and nonmating periods.Australian Research Council Discovery Grant to P.R.Y.B

    Are We Treating The Patient or the Disease?

    Get PDF
    The evidence abounds. A compelling body of research estimates that psychosocial stressors play a role in a significant number of patient complaints seen in primary care. In addition to the challenges faced by primary care clinicians who must consider their patients' psychosocial stressors, these factors can also affect pharmacists' care. Patient stress, through a number of mechanisms, can limit the efficacy of medicine as well as our efforts to achieve optimal medication management, and adds a poorly examined complexity to patient care practices. A landmark Institute of Medicine report calls for "whole patient "care, addressing psychosocial health needs, not as an embellishment, but as part of routine care. Whole patient care requires a fundamental shift, with patient needs at the center of healthcare delivery, and psychosocial-linked distress considered as integral to that model. These considerations place this topic squarely within the pharmacists' scope of practice and urgently call for an expanded approach to patient care and an opportunity for pharmacists to address that need. To parallel this discussion, the contributing role of practitioner stress is briefly reviewed.   Type: Idea Pape

    Aerosol Indirect Effects on the Nighttime Arctic Ocean Surface from Thin, Predominantly Liquid Clouds

    Get PDF
    Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just approximately 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by approximately 1-1.4 W m(exp -2) regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of approximately 0.11 W m(exp 2) at the Arctic sea ice surface (approximately 8 % of the clean background cloud effect), excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over open ocean do not appear to respond to aerosols as strongly as clouds over stratified sea ice environments, indicating a larger influence of meteorological forcing over aerosol microphysics in these types of clouds over the rapidly changing Arctic Ocean

    Agents to the Rescue?

    Get PDF
    The advent of electronic environments is bound to have profound effects on consumer decision making. While the exact nature of these influences is only partially known it is clear that consumers could benefit from properly designed electronic agents that know individual users\u27 preferences and can act on their behalf. An examination of the various roles agents perform is presented as a framework for thinking about the design of electronic agents. In addition, a set of goals is established that include both outcome-based measures, such as improving decision quality, as well as process measures like increasing satisfaction and developing trust

    Norm-based coding of voice identity in human auditory cortex

    Get PDF
    Listeners exploit small interindividual variations around a generic acoustical structure to discriminate and identify individuals from their voice—a key requirement for social interactions. The human brain contains temporal voice areas (TVA) [1] involved in an acoustic-based representation of voice identity [2, 3, 4, 5 and 6], but the underlying coding mechanisms remain unknown. Indirect evidence suggests that identity representation in these areas could rely on a norm-based coding mechanism [4, 7, 8, 9, 10 and 11]. Here, we show by using fMRI that voice identity is coded in the TVA as a function of acoustical distance to two internal voice prototypes (one male, one female)—approximated here by averaging a large number of same-gender voices by using morphing [12]. Voices more distant from their prototype are perceived as more distinctive and elicit greater neuronal activity in voice-sensitive cortex than closer voices—a phenomenon not merely explained by neuronal adaptation [13 and 14]. Moreover, explicit manipulations of distance-to-mean by morphing voices toward (or away from) their prototype elicit reduced (or enhanced) neuronal activity. These results indicate that voice-sensitive cortex integrates relevant acoustical features into a complex representation referenced to idealized male and female voice prototypes. More generally, they shed light on remarkable similarities in cerebral representations of facial and vocal identity

    Membrane-Bound sn-1,2-Diacylglycerols Explain the Dissociation of Hepatic Insulin Resistance from Hepatic Steatosis in MTTP Knockout Mice

    Get PDF
    Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp(-/-)) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp(-/-) mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp(-/-) mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKC epsilon activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp(-/-) mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKC epsilon activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp(-/-) mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKC epsilon activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp(-/-) mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp(-/-) mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp(-/-) miceThis work was supported by National Institutes of Health Grants R01 DK116774, R01 DK119968, R01 DK114793, R01 DK113984, K23 DK10287, P30 DK045735, DK121490, and HL137202 and the Veterans Health Administration Merit Review Awards I01 BX000901 and BX004113. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the U.S. Department of Veterans Affair
    corecore