116 research outputs found

    Comparison of the biomarkers for targeted therapies in primary extra-mammary and mammary Paget's disease.

    Get PDF
    Primary Extra-mammary Paget's disease (EMPD) is a very rare cutaneous adenocarcinoma affecting anogenital or axillary regions. It is characterized by a prolonged course with recurrences and eventually distant metastatic spread for which no specific therapy is known. Eighteen EMPD (13 vulvar and five scrotal) and ten mammary Paget's disease (MPD) cases were comprehensively profiled for gene mutations, fusions and copy number alterations, and for therapy-relevant protein biomarkers). Mutations in TP53 and PIK3CA were the most frequent in both cohorts: 7/15 and 5/15 in EMPD; 1/6 and 4/7 in MPD HER2 gene amplification was detected in 4/18 EMPD (3 vulvar and 1 scrotal case) in contrast to MPD where it was detected in the majority (7/8) of cases. TOP2A gene amplification was seen in 2/12 EMPD and 1/6 MPD, respectively. Similarly, no difference in estrogen receptor expression was seen between the EMPD (4/15) and MPD (3/10). Androgen receptor was also expressed in the majority of both cohorts (12/16 EMPD) and (7/8 MPD).Here ARv7 splice variant was detected in 1/7 EMPD and 1/4 MPD cases, respectively. PD-L1 expression on immune cells was exclusively observed in three vulvar EMPD. In contrast to MPD, six EMPDs harbored a "high" tumor mutation burden (≥10 mutations/Mb). All tested cases from both cohorts were MSI stable. EMPD shares some targetable biomarkers with its mammary counterpart (steroid receptors, PIK3CA signaling pathways, TOP2A amplification). HER2 positivity is notably lower in EMPD while biomarkers to immune checkpoint inhibitors (high TMB and PD-L1) were observed in some EMPD. Given that no consistent molecular alteration characterizes EMPD, comprehensive theranostic profiling is required to identify individual patients with targetable molecular alterations

    Lymphoepithelioma-like carcinoma of the vulva, an underrecognized entity? Case report with a single inguinal micrometastasis detected by sentinel node technique

    Get PDF
    This report describes an unusual EBV-negative lymphoepithelioma-like carcinoma of the vulva in a 73-year-old patient. The lesion was localised at the right minor labium and was resected by partial vulvectomy. A synchronous sentinel lymph node biopsy revealed a single micrometastasis in the right inguinal region, which prompted local radiotherapy. Follow-up nine months later showed only slight vulvar atrophy, without signs of local recurrence or distant metastases

    A Mouse Model for Osseous Heteroplasia

    Get PDF
    GNAS/Gnas encodes Gsa that is mainly biallelically expressed but shows imprinted expression in some tissues. In Albright Hereditary Osteodystrophy (AHO) heterozygous loss of function mutations of GNAS can result in ectopic ossification that tends to be superficial and attributable to haploinsufficiency of biallelically expressed Gsa. Oed-Sml is a point missense mutation in exon 6 of the orthologous mouse locus Gnas. We report here both the late onset ossification and occurrence of benign cutaneous fibroepithelial polyps in Oed-Sml. These phenotypes are seen on both maternal and paternal inheritance of the mutant allele and are therefore due to an effect on biallelically expressed Gsa. The ossification is confined to subcutaneous tissues and so resembles the ossification observed with AHO. Our mouse model is the first with both subcutaneous ossification and fibroepithelial polyps related to Gsa deficiency. It is also the first mouse model described with a clinically relevant phenotype associated with a point mutation in Gsa and may be useful in investigations of the mechanisms of heterotopic bone formation. Together with earlier results, our findings indicate that Gsa signalling pathways play a vital role in repressing ectopic bone formation

    Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    Get PDF
    The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall mmunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other mmunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.Peer reviewe

    Alveolar Soft-Part Sarcoma of the Tongue

    No full text
    corecore