671 research outputs found

    Vortex Polarity Switching in Magnets with Surface Anisotropy

    Get PDF
    Vortex core reversal in magnetic particle is essentially influenced by a surface anisotropy. Under the action of a perpendicular static magnetic field the vortex core undergoes a shape deformationof pillow- or barrel-shaped type, depending on the type of the surface anisotropy. This deformation plays a key point in the switching mechanism: We predict that the vortex polarity switching is accompanied (i) by a linear singularity in case of Heisenberg magnet with bulk anisotropy only and (ii) by a point singularities in case of surface anisotropy or exchange anisotropy. We study in details the switching process using spin-lattice simulations and propose a simple analytical description using a wired core model, which provides an adequate description of the Bloch point statics, its dynamics and the Bloch point mediated switching process. Our analytical predictions are confirmed by spin-lattice simulations for Heisenberg magnet and micromagnetic simulations for nanomagnet with account of a dipolar interaction.Comment: 17 pages, 15 figure

    Relaxation Dynamics of Photoinduced Changes in the Superfluid Weight of High-Tc Superconductors

    Get PDF
    In the transient state of d-wave superconductors, we investigate the temporal variation of photoinduced changes in the superfluid weight. We derive the formula that relates the nonlinear response function to the nonequilibrium distribution function. The latter qunatity is obtained by solving the kinetic equation with the electron-electron and the electron-phonon interaction included. By numerical calculations, a nonexponential decay is found at low temperatures in contrast to the usual exponential decay at high temperatures. The nonexponential decay originates from the nonmonotonous temporal variation of the nonequilibrium distribution function at low energies. The main physical process that causes this behavior is not the recombination of quasiparticles as previous phenomenological studies suggested, but the absorption of phonons.Comment: 18 pages, 12 figures; to be published in J. Phys. Soc. Jpn. Vol. 80, No.

    Fundamental Theorem of Asset Pricing under fixed and proportional transaction costs

    Get PDF
    We show that the lack of arbitrage in a model with both fixed and proportional transaction costs is equivalent to the existence of a family of absolutely continuous single-step probability measures, together with an adapted process with values between the bid-ask spreads that satisfies the martingale property with respect to each of the measures. This extends Harrison and Pliska's classical Fundamental Theorem of Asset Pricing to the case of combined fixed and proportional transaction costs

    Multivariate risks and depth-trimmed regions

    Get PDF
    We describe a general framework for measuring risks, where the risk measure takes values in an abstract cone. It is shown that this approach naturally includes the classical risk measures and set-valued risk measures and yields a natural definition of vector-valued risk measures. Several main constructions of risk measures are described in this abstract axiomatic framework. It is shown that the concept of depth-trimmed (or central) regions from the multivariate statistics is closely related to the definition of risk measures. In particular, the halfspace trimming corresponds to the Value-at-Risk, while the zonoid trimming yields the expected shortfall. In the abstract framework, it is shown how to establish a both-ways correspondence between risk measures and depth-trimmed regions. It is also demonstrated how the lattice structure of the space of risk values influences this relationship.Comment: 26 pages. Substantially revised version with a number of new results adde

    Electrophoresis of a rod macroion under polyelectrolyte salt: Is mobility reversed for DNA?

    Full text link
    By molecular dynamics simulation, we study the charge inversion phenomenon of a rod macroion in the presence of polyelectrolyte counterions. We simulate electrophoresis of the macroion under an applied electric field. When both counterions and coions are polyelectrolytes, charge inversion occurs if the line charge density of the counterions is larger than that of the coions. For the macroion of surface charge density equal to that of the DNA, the reversed mobility is realized either with adsorption of the multivalent counterion polyelectrolyte or the combination of electrostatics and other mechanisms including the short-range attraction potential or the mechanical twining of polyelectrolyte around the rod axis.Comment: 8 pages, 5 figures, Applied Statistical Physics of Molecular Engineering (Mexico, 2003). Journal of Physics: Condensed Matters, in press (2004). Journal of Physics: Condensed Matters, in press (2004

    Localized charged states and phase separation near second order phase transition

    Full text link
    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain of the phase separated state is estimated. The role of the Coulomb interaction is elucidated

    Asymmetric Domain Nucleation and Unusual Magnetization Reversal in Ultrathin Co Films with Perpendicular Anisotropy

    Get PDF
    We report unexpected phenomena during magnetization reversal in ultrathin Co films and Co/Pt multilayers with perpendicular anisotropy. Using magneto-optical Kerr microscopy and magnetic force microscopy we have observed asymmetrical nucleation centers where the reversal begins for one direction of the field only and is characterized by an acute asymmetry of domain-wall mobility. We have also observed magnetic domains with a continuously varying average magnetization, which can be explained in terms of the coexistence of three magnetic phases: up, down, and striped
    corecore