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In the transient state of d-wave superconductors, we investigate the temporal variation of

photoinduced changes in the superfluid weight. We derive the formula that relates the non-

linear response function to the nonequilibrium distribution function. The latter quantity is

obtained by solving the kinetic equation with the electron-electron and the electron-phonon

interaction included. By numerical calculations, a nonexponential decay is found at low tem-

peratures in contrast to the usual exponential decay at high temperatures. The nonexpo-

nential decay originates from the nonmonotonous temporal variation of the nonequilibrium

distribution function at low energies. The main physical process that causes this behavior is

not the recombination of quasiparticles as previous phenomenological studies suggested, but

the absorption of phonons.
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1. Introduction

There have been many optical spectroscopic experiments on nonequilibrium superconduc-

tors recently, and they have usually been performed by pump-probe techniques. 1–8 As for

the interpretation of experimental results, the photoinduced change in reflectivity is often

assumed to be directly proportional to the excited nonequilibrium electron density. 1,7, 9 Then

the temporal evolution of the photoinduced quasiparticle density is analyzed with the use

of the Rothwarf-Taylor (RT) equation,4,5, 8 which is first presented in ref. 10. This type of

phenomenological equation is claimed to be theoretically derived in refs. 11 and 12 with the

use of the kinetic equation for the electron distribution function.

The temporal evolution of the superfluid weight is observed in the experiment with the

use of an optical pump and a THz probe,5 and it is found that the photoinduced change in the

superfluid weight decays nonexponentially. The RT equation has been considered to be suitable

for describing nonexponential relaxation as the bimolecular relaxation, because this equation

includes the quadratic term of the nonequilibrium quasiparticle density as the recombination

of the quasiparticles. However, the quadratic term is not allowed in the perturbation expansion
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of the external field for the reason that it does not satisfy the consistency of the equation with

respect to the order of the pump intensity. Therefore, a question arises about the origin of

the nonexponential relaxation in the case that the intensity of the pump beam is low.

In this study with regard to this problem, we reexamine two points that have been usually

assumed in previous works. One is about the relation between the photoinduced change in

optical conductivity and the nonequilibrium quasiparticle density. This relation is not self-

evident, but it has not been investigated so far, in addition to the expression of the former

quantity itself. The other is about the temporal evolution of the nonequilibrium quasiparticle

density. The phenomenological description given by the RT equation10,13 is based on averaged

quasiparticle density. This is also open to doubt for reason that the nonequilibrium quasipar-

ticle density should have a dependence on energy. The kinetic equation is not simply averaged

over energy because of the existence of the interaction effect as the kinetic equation in the

normal state14–16 indicates.

To investigate these problems, we microscopically calculate the response function of the

transient state. Our calculation shows that the vertex correction term is predominant in pho-

toinduced changes in the superfluid weight, which is same as that in the case of the steady

state in a previous study.17 The nonequilibrium distribution function is related to the response

function only through the interaction effect (the vertex correction term). The kinetic equation

for this function is solved with the use of the electron-electron and electron-phonon inter-

actions as the collision integral. The numerical calculation shows that, at low temperatures,

the photoinduced change in the transient reflectivity is not directly proportional to the num-

ber of photoexcited quasiparticles, and the nonexponential decay does not originate from the

recombination term, but from the absorption of phonons that enhances the nonequilibrium

electron distribution. The effect of nonequilibrium phonons is also considered, and this makes

the relaxation dynamics slow as a result of the interaction effect.

2. Response Function in the Transient States

The current under the pump (Apu) and probe (Apr) beam is written as

J (3)(t) = −
∫

dω

2π

∫

dΩ

2π
K(3)(−ω,−Ω + ω/2,Ω + ω/2)Apu

−Ω+ω/2A
pu
Ω+ω/2A

pr
−ω.

Here, Apu
Ω = A′

pu[e−∆T 2(Ω−Ω0)2/4 + e−∆T 2(Ω+Ω0)2/4] and Apr
ω = eiωtA′

pre
−∆t2ω2/4 in the case of

the Gaussian pulse; Apu
τ = Apu cos(Ω0τ)e−(τ/∆T )2 and Apr

τ = Apr cos(ω0τ)e−(τ/∆t)2 (A′
pu =

Apu
√

π∆T/2 and A′
pr = Apr

√
π∆t). Then Apu

Ω =
∫

dτeiΩτApu
τ and Apu

ω =
∫

dτeiωτApu
τ−t in

which t is the time delay of the probe pulse after the pump excitation. We put ω0 = 0 to

probe the the superfluid weight. The expression of K(3) is given in ref. 18, but the rewritten

form is presented below, which clarifies its relation to the nonequilibrium distribution function

and its temporal evolution. The integration of K(3)(−ω,−Ω + ω/2,Ω + ω/2) by ω and Ω will

lead to the temporal variation of the superfluid weight, if possible. However it is difficult to
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perform this integration numerically for the reason that the calculation at a very small energy

scale is required to determine the variation for a long time. Then we transform the expression

of K(3) into a feasible one, as shown below.

We make the following assumptions to calculate the nonlinear response function. The

order parameter takes a constant value and is not affected by the external field. The origin of

the pairing interaction is not specified (the existence of the superconducting gap is assumed

at the outset). The momentum dependence of the vertex correction is weak, which leads to

the omission of Σ(1) and Σ(3) (Σ(n) is the self-energy that includes the external fields of the

n-th order). We take the local approximation as discussed in ref. 17.

Then the nonlinear response function is written as K(3) = N0

∫

FS

∫

dεv4
kg

(3)
ε,ε . Here, vk is

the quasiparticle velocity, the summation
∑

k is transformed into the integration N0

∫

FS

∫

dξ

(N0 is the density of states at the Fermi surface), and g
(3)
ε,ε = tanh ε

2T (g
R(3)
ε,ε − g

A(3)
ε,ε )+ g

(a)(3)
ε,ε .19

g =
∫ dξ

πi G (the integration of Green’s function G by the electron dispersion ξ), and R, A, and

(a) indicate the retarded, advanced, and anomalous parts of Green’s function, respectively, as

introduced in ref. 20, in which the microscopic formulation for the nonequilibrium supercon-

ductors using Green’s function is given. (3) indicates the third-order of the external fields, and

we represent g̃ (g) as Green’s function, which includes (does not include) the external fields Hω.

The predominant term g
(a)(3)
ε,ε is determined by g̃

(a)(3)
ε,ε =

∫

dω
2π

∫

dΩ
2π g

(a)(3)
ε,ε H−Ω+ω/2HΩ+ω/2H−ω,

which satisfies the following equation with reference to Éliashberg’s formulation.20

(εR − εA)g̃(a)(3)
ε,ε =

∫

dω

2π
[H−ωg̃

(a)(2)
ε,ε−ω − Hωg̃

(a)(2)
ε−ω,ε ] +

∫

dω

2π
[H−ω(Tε−ω − Tε)g̃

R(2)
ε,ε−ω − Hω(Tε − Tε−ω)g̃

A(2)
ε−ω,ε]

+

∫

dω

2π
[Σ

R(2)
ε,ε−ωg̃

(a)(1)
ε−ω,ε − g̃

(a)(1)
ε,ε−ω Σ

A(2)
ε−ω,ε + Σ

(a)(2)
ε,ε−ω g̃

A(1)
ε−ω,ε − g̃

R(1)
ε,ε−ωΣ

(a)(2)
ε−ω,ε ].

Here, Tε = tanh ε
2T , εR(A) = ε − Σ

R(A)
k,ε , and Hω = vkAω with the external field Aω. The

functions g̃ in this equation satisfy similar equations. By taking only the predominant terms

into account, g̃
(a)(3)
ε,ε is written as

g̃(a)(3)
ε,ε ' 1

εR − εA

∫

dω

2π

∫

dΩ

2π
[Rω(Ω)g

R(1)
ε,ε+ω + R∗

−ω(Ω)g
A(1)
ε−ω,ε]H−Ω+ω/2HΩ+ω/2H−ω

+
1

εR − εA

∫

dω

2π
[Σ

(a)(2)
ε,ε+ωg

A(1)
ε+ω,ε − g

R(1)
ε,ε+ωΣ

(a)(2)
ε+ω,ε ]H−ω.

(1)

Here,

Rω(Ω) =
Tε+ω − Tε−Ω+ω/2

εR − (ε − Ω + ω/2)A
+

Tε−Ω+ω/2 − Tε

εR − (ε − Ω + ω/2)R
+

Tε+ω − Tε+Ω+ω/2

εR − (ε + Ω + ω/2)A
+

Tε+Ω+ω/2 − Tε

εR − (ε + Ω + ω/2)R
.

To derive the temporal variation of K(3), we consider the following integration with use of

some function fω(Ω);
∫

dω

2π

∫

dΩ

2π
Apu

−Ω+ω/2A
pu
Ω+ω/2A

pr
−ωfω(Ω) '

A
′2
puA′

prexp[−t2/(∆t2 + ∆T 2/2)]
√

2π∆T
√

∆t2 + ∆T 2/2
[f0(Ω0)+f0(−Ω0)].

(2)
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If the pulse widths ∆t and ∆T are several femtoseconds, the effective range of frequency is

of the order of the superconducting gap (∆0). Here, we consider the case that Ω0∆T � 1,

Ω0 � ∆0, and the dependences of fω(Ω) on ω and Ω are weak within |ω| < 1/∆t and |Ω∓Ω0| <

1/∆T , respectively. Firstly, we examine the temporal variation of the first term of eq. (1). If

we take account of the above consideration and the weak dependence of this term on ω, we

can apply the integration eq. (2) to this term. This term is negligible in comparison with the

vertex correction term discussed below because of the smallness of R0(Ω0), which is the same

as that in the case of ref. 17, in addition to the exponential factor. Next, we consider the second

term of eq. (1) (the vertex correction term). By using the relations g̃
R(1)
ε,ε+ω ' H−ω∂gR

k,ε/∂ε and

∂gA
k,ε/∂ε = −(∂gR

k,ε/∂ε)∗, the vertex correction term is written as

1

εR − εA

∫

dω

2π
[Σ

(a)(2)
ε,ε+ωg

A(1)
ε+ω,ε − g

R(1)
ε,ε+ωΣ

(a)(2)
ε+ω,ε]H−ω ' −2

εR − εA

∫

dω

2π
Re

(

∂gR
k,ε

∂ε

)

Σ
(a)(2)
k,ε (ω)H−ω.

Here, we put Σ
(a)(2)
ε+ω/2,ε−ω/2 = Σ

(a)(2)
k,ε (ω), which is a functional of g̃

(a)(2)
k,ε (ω), and its functional

form is determined by specifying the interaction and the self-energy. g̃
(a)(2)
k,ε (ω) satisfies the

following equation:

[(ε + ω/2)R − (ε − ω/2)A]g̃
(a)(2)
k,ε (ω) =

∫

dΩ

2π
v2
kR̃k,ε(ω,Ω)Apu

−Ω+ω/2A
pu
Ω+ω/2 − (gR

k,ε+ω/2 − gA
k,ε−ω/2)Σ

(a)(2)
k,ε (ω)

− (fR
k,ε+ω/2 − fA

k,ε−ω/2)Υ
(a)(2)
k,ε (ω) + (ΥR

k,ε+ω/2 − ΥA
k,ε−ω/2)f̃

(a)(2)
k,ε (ω).

(3)

Here, Υ represents the anomalous (off-diagonal) part of the self-energy, gR
k,ε = −2εR/ZR

k,ε and

fR
k,ε = −2∆k/Z

R
k,ε

(

ZR
k,ε = sgn(ε)

√

(εR)2 − ∆2
k

)

, and R̃k,ε(ω,Ω) = Rk,ε(ω,Ω) + Rk,ε(ω,−Ω).

Rk,ε(ω,Ω) =
(Tε+ω/2 − Tε+Ω)(gR

k,ε+ω/2 − gA
k,ε+Ω)

(ε + ω/2)R − (ε + Ω)A
+

(Tε+Ω − Tε−ω/2)(g
R
k,ε+ω/2 − gR

k,ε+Ω)

(ε − ω/2)R − (ε + Ω)R

−
(Tε+ω/2 − Tε+Ω)(gA

k,ε+Ω − gA
k,ε−ω/2)

(ε + Ω)A − (ε − ω/2)A
−

(Tε+Ω − Tε−ω/2)(g
R
k,ε+Ω − gA

k,ε−ω/2)

(ε + Ω)R − (ε − ω/2)A
.

This latter quantity is related to the pump-induced term and the initial nonequilibrium dis-

tribution function, which directly reflects the values of the self-energy. This induced term

vanishes in the case that the self-energy is absent, as indicated in ref. 17.

As shown in eq. (3) the dependence of g̃
(a)(2)
k,ε (ω) (and Σ

(a)(2)
k,ε (ω)) on ω is strong, and

this makes the t-dependence of the vertex correction term different from that of the first

term of eq. (1) and larger than that. By using the integration
∫

dω
2π g̃

(a)(2)
k,ε (ω)e−iωte−∆t2ω2/4 =

1√
π∆t

∫

dτ g̃
(a)(2)
k,ε (τ)e−(t−τ)2/∆t2 ' g̃

(a)(2)
k,ε (t), which is applicable to the time range t � ∆t,

we can transform eq. (3) into the following kinetic equation, which describes the long time
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behavior of g̃
(a)(2)
k,ε (t):

i
∂g̃

(a)(2)
k,ε (t)

∂t
=α(t)v2

kR̃k,ε(0,Ω0) + (ΣR
k,ε − ΣA

k,ε)g̃
(a)(2)
k,ε (t). − (gR

k,ε − gA
k,ε)Σ

(a)(2)
k,ε (t)

+ (ΥR
k,ε − ΥA

k,ε)f̃
(a)(2)
k,ε (t). − (fR

k,ε − fA
k,ε)Υ

(a)(2)
k,ε (t).

(4)

Here, α(t) =
A

′2
puexp[−t2/(∆t2+∆T 2/2)]
√

2π∆T
√

∆t2+∆T 2/2
. To obtain K(3), the solution of this kinetic equation is

substituted into Σ
(a)(2)
k,ε (t) in the following vertex correction term:

J (3)
vc (t) = −N0

∫

FS

∫

dεv2
k

−2

εR − εA
Re

(

∂gR
k,ε

∂ε

)

Σ
(a)(2)
k,ε (t)A′

pr. (5)

The kinetic equation for nonequilibrium phonons is similarly written as

i
2ω

ω2
φ

∂D
(a)(2)
ω (t)

∂t
= (ΠR

ω − ΠA
ω )D(a)(2)

ω (t). − (DR
ω − DA

ω )Π(a)(2)
ω (t). (6)

Here, D
R,(A)
ω and Π

R,(A)
ω are the retarded (advanced) phonon Green’s function and the self-

energy by phonon-electron interaction, respectively. (a) and (2) indicate the anomalous part

and the order of the external field, respectively, which is same as that in the case of electrons.

3. Kinetic Equation of the Nonequilibrium Distribution Function

In this section, we derive the kinetic equations for the distribution functions of electrons

and phonons. We put the deviation of the distribution function from the equilibrium state

by the pump excitation as δnε(t) and δNωφ
(t) for electrons and phonons, respectively. We

consider a two-dimensional system and replace
∫

FS by
∫ dϕ

2π . vk = vF cos ϕ (vF is the Fermi

velocity) and ∆k = ∆0 cos 2ϕ for d-wave superconductors.

We adopt the second-order perturbation expansion for the electron-electron interaction

and the one-loop approximation for the electron-phonon interaction as the self-energy. We

rewrite the nonequilibrium Green function as g̃
(a)(2)
ϕ,ε (t) = −2δnε(t)(g

R
ϕ,ε − gA

ϕ,ε), f̃
(a)(2)
ϕ,ε (t) =

−2δnε(t)(f
R
ϕ,ε − fA

ϕ,ε), and D
(a)(2)
ω (t) = 2δNω(t)(DR

ω − DA
ω ) with the use of DR

ω − DA
ω =

−πiω[δ(ω − ωφ) + δ(ω + ωφ)] (for example, see ref. 21). We consider acoustic phonons and

put ωφ = vskF|φ| (vs is the sound velocity). Then the kinetic equation for electrons, eq. (4),

is written as

∂δnε(t)

∂t
=

1

ḡR
ε

α(t)

4i

∫

dϕ

2π
v2
ϕR̃ϕ,ε(0,Ω0) −

1

ḡR
ε

π

2
N0g

2

∫ φD

−φD

dφ

2π
ωφIel−ph

φ,ε [δn, δN ]

− 1

ḡR
ε

π

2

U2N2
0

vFkF

∫∫∫

dϕdϕ1dϕ2

(2π)3

∫∫

dε1dε2δ̃ϕ,ϕ1,ϕ2
Iel−el
ε,ϕ;ε1,ϕ1;ε2,ϕ2

[δn].

(7)

Here, ḡε := −
∫ dϕ

2π RegR
ϕ (ε) and δ̃ϕ,ϕ1,ϕ2

:= δ[1 − cos(ϕ − ϕ1) + cos(ϕ − ϕ2) − cos(ϕ1 − ϕ2)]

is a delta function. U is the effective short-range Coulomb repulsion energy, which is called

the on-site Coulomb interaction in the Hubbard model. g is the coefficient of the electron-

phonon interaction, which is usually written as g =
√

~/2MivsVi (Mi is the mass of the
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ion and Vi is the renormalized ion potential). In the next section, we use UN0 and g2N0 as

dimensionless parameters that characterize the strengths of the electron-electron and electron-

phonon interactions, respectively. The collision terms for the electron-electron and electron-

phonon interactions are written as

Iel−el
ε,ϕ;ε1,ϕ1;ε2,ϕ2

[δn] =
RegR

ϕ,εRegR
ϕ1,ε1RegR

ϕ2,ε2RegR
ϕ−ϕ1+ϕ2,ε−ε1+ε2

cosh ε
2T cosh ε1

2T cosh ε2
2T cosh ε−ε1+ε2

2T

×
[

(cosh ε
2T )2δnε(t) − (cosh ε1

2T )2δnε1(t) + (cosh ε2
2T )2δnε2(t) − (cosh ε−ε1+ε2

2T )2δnε−ε1+ε2(t)
]

,

and

Iel−ph
φ,ε [δn, δN ] =

(

coth
ωφ

2T + tanh
ε−ωφ

2T

)

g−φ,εδnε(t) +
(

coth
ωφ

2T − tanh
ε+ωφ

2T

)

g+
φ,εδnε(t)

−
(

coth
ωφ

2T − tanh ε
2T

)

g−φ,εδnε−ωφ
(t) −

(

coth
ωφ

2T + tanh ε
2T

)

g+
φ,εδnε+ωφ

(t)

+
(

tanh
ε−ωφ

2T − tanh ε
2T

)

g−φ,εδNφ(t) +
(

tanh
ε+ωφ

2T − tanh ε
2T

)

g+
φ,εδNφ(t).

Here, g∓φ,ε :=
∫ dϕ

2π

[

RegR
ϕ−φ(ε ∓ ωφ)RegR

φ (ε) − RefR
ϕ−φ(ε ∓ ωφ)RefR

φ (ε)
]

.

The kinetic equation for nonequilibrium phonons, eq. (6), is written as

∂δNωφ

∂t
= −γescδNωφ

+
vs

vF

1

2
N0g

2

∫ ∞

0
dεIph−el

φ,ε [δnε, δNφ].

Here, we add a phenomenological term, γescδNωφ
(damping by phonon escape), which describes

the equilibration between the electron-phonon system and the reservoir.

Iph−el
φ,ε [δnε, δNφ] =

(

coth
ωφ

2T + tanh
ε−ωφ

2T

)

g−φ,εδnε(t) −
(

coth
ωφ

2T − tanh
ε+ωφ

2T

)

g+
φ,εδnε(t)

−
(

coth
ωφ

2T − tanh ε
2T

)

g−φ,εδnε−ωφ
(t) +

(

coth
ωφ

2T + tanh ε
2T

)

g+
φ,εδnε+ωφ

(t)

+
(

tanh
ε−ωφ

2T − tanh ε
2T

)

g−φ,εδNφ(t) −
(

tanh
ε+ωφ

2T − tanh ε
2T

)

g+
φ,εδNφ(t).

The energy conservation is also discussed using the kinetic equations. The additional

energy induced by the external field in the system of electrons and phonons is given by

2
∑

k

EkδnEk
(t)+

∑

q

ωqδNωq (t) = 2N0

∫

dϕ

2π

∫

dε
|ε|

√

ε2 − ∆2
ϕ

εδnε(t)+
N0

2

∫ φD

−φD

dφ

2π
2πvFkF|φ|ωφδNφ(t).

With the use of the kinetic equation, it is shown that this quantity is equal to the energy

injected by the external field, which is written as
∫ t

−∞
dt′N0

∫

dε

∫

dϕ

2π

1

4i
α(t′)v2

ϕR̃ϕ,ε(0,Ω0).

In the above discussion, we put γesc = 0 for the energy conservation. In the case of γesc 6= 0,

the energy of the electron-phonon system dissipates into the reservoir system.

The solution of the kinetic equations is related to the nonlinear response function as

follows. δnε(t) and δNω(t) obtained by solving the kinetic equations is substituted to Σ
(a)(2)
ϕ,ε (t)
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of the previous section as Σ
(a)(2)
ϕ,ε (t) = Σ

(a)el−el
ϕ,ε (t) + Σ

(a)el−ph
ϕ,ε (t). Here,

Σ(a)el−el
ϕ,ε (t) = − πi

U2N2
0

vFkF

∫∫

dϕ1dϕ2

(2π)2

∫∫

dε1dε2δ̃ϕ,ϕ1,ϕ2

RegR
ϕ1,ε1RegR

ϕ2,ε2RegR
ϕ−ϕ1+ϕ2,ε−ε1+ε2

cosh ε
2T cosh ε1

2T cosh ε2
2T cosh ε−ε1+ε2

2T

×
[

(cosh ε1
2T )2δnε1(t) − (cosh ε2

2T )2δnε2(t) + (cosh ε−ε1+ε2
2T )2δnε−ε1+ε2(t)

]

,

and

Σ(a)el−ph
ϕ,ε (t) = − πiN0g

2

∫ φD

−φD

dφ

2π
ωφ{RegR

ϕ−φ,ε−ωφ
[
(

coth
ωφ

2T − tanh ε
2T

)

δnε−ωφ
(t) −

(

tanh
ε−ωφ

2T − tanh ε
2T

)

δNφ(t)]

+ RegR
ϕ−φ,ε+ωφ

[
(

coth
ωφ

2T + tanh ε
2T

)

δnε+ωφ
(t) −

(

tanh
ε+ωφ

2T − tanh ε
2T

)

δNφ(t)]}.

Then this Σ
(a)(2)
ϕ,ε (t) is substituted into eq. (5), which gives the nonlinear response function.

4. Results

The results of the numerical calculation are shown below. The superconducting gap ∆0 is

taken as the unit of energy ∆0 = 1.0 (this leads to the superconducting transition temperature

Tc = 0.465), and we put ωφ ≤ vskF. We fix the values of several parameters as follows:

Ω0 = 6.0,22 vskF = 2.0372, vs/vF = 0.05 (which leads to the Fermi energy EF = vFkF/2 ' 20),

UN0 = 0.2, and g2N0 = 0.05 (this value corresponds to λ = 0.1 as the electron-phonon

coupling constant). We add a small δ = −0.01 to the imaginary part of the self-energy as

effective impurities and a finite mean free path.

In the calculation of the kinetic equation eq. (7), the following approximation is

used to make a multiple integration in the electron-electron collision term a feasible one:
∫∫∫ dϕdϕ1dϕ2

(2π)3 δ̃ϕ,ϕ1,ϕ2
RegR

ϕ,εRegR
ϕ1,ε1RegR

ϕ2,ε2RegR
ϕ−ϕ1+ϕ2,ε−ε1+ε2 → ReḡR

ε ReḡR
ε1ReḡR

ε2ReḡR
ε−ε1+ε2.

We perform the same approximation for Σ
(a)el−el
ϕ,ε . This leads to violation of the momentum

conservation, although the energy conservation is satisfied. The numerical calculation indicates

that, by this replacement, the interaction effect is underestimated at low energies (|ε| < ∆0)

owing to averaging the angular dependence. However, the quantitative difference is small es-

pecially at |ε| > ∆0. Then it is not considered that this approximation causes qualitative

changes for numerical results.

Below we consider two typical cases for a nonequilibrium phonon system. The numerical

calculation of K(3) shows that calculations with large values of the damping γesc lead to results

similar to those in the case of δN = 0 (phonons in thermal equilibrium). On the other hand,

the results with small values of γesc are approximated by those for γesc = 0. Therefore, we

show the calculated results only for δN = 0 and δN 6= 0 with γesc = 0.0 as characteristic cases

of the phonon system.

To solve the kinetic equations, we consider the square pulse and put α(t) = 1 for 0 < t <

0.25 and α(t) = 0 otherwise. (The long time behavior is not affected if we use a Gaussian

pulse.) Then we redefine K(3) as K(3) = −J
(3)
vc (t)/A′

pr from eq. (5) with the use of this α(t),

and this is the photoinduced change in the superfluid weight. (We can put J (3)(t) ' J
(3)
vc (t)
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Fig. 1. Dependences of 1/K(3) on time for various values of T/Tc (numbers in the figure). The

phonons are supposed to be (a) in thermal equilibrium (δN = 0), and (b) in nonequilibrium state

(δN 6= 0).

as noted above.) If we use only Σ(a)el−el (Σ(a)el−ph) as Σ(a)(2) in this equation, we write this

quantity as K(3)el−el (K(3)el−ph) below.

The temporal variation of 1/K(3) is shown in Fig. 1. If we put ∆0 = 30 meV, t = 1000

corresponds to about 22 ps. This is comparable to the range of time taken in the experiments,5

and we present the numerical results for this range hereafter. K(3) shows a nonexponential

decay for low T/Tc, and it becomes an exponential decay for high T/Tc as in the experimental

result.5 Here, the nonexponential decay and exponential decay indicate 1/K(3) ∝ 1 + γt and

1/K(3) ∝ eγt, respectively. At first sight, the former seems to be an approximation of the latter

using eγt ' 1 + γt with γt � 1, but this is not the case. For example, at T/Tc = 0.05, 1/K(3)

is fitted to 0.1(1 + 0.0076t) (0.0076t � 1 for large t). Therefore, some qualitative differences

exist between low and high T/Tc. It is shown below that this difference in relaxation dynamics

arises from the temporal variation of the nonequilibrium quasiparticles (δnε), and this traces

back to the change of the predominant physical process in the collision integral. In the case of

δN 6= 0, the relaxation becomes slower than that in the case of δN = 0. As shown below this

originates from the existence of δN , which directly affects K(3) through the electron-phonon

interaction, in addition to the slow relaxation of nonequilibrium electrons. If we vary g2N0,

we obtain qualitatively the same results with regard to the t- and T -dependences of 1/K(3),

but there are several quantitative differences. In the case of δN = 0 1/K(3) increases, and the

exponential decay of 1/K(3) is observed at lower T/Tc with increasing g2N0. This is because

the equilibration between electrons and phonons becomes faster, and δn rapidly decreases.

On the other hand, in the case of δN 6= 0, the absolute value of 1/K(3) decreases with

increasing g2N0. In this case, the nonequilibrium electrons remain finite, and the interaction

effect directly enhances K(3).
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To clarify the effect of nonequilibrium phonons on K(3), we decompose K(3)el−ph to con-

tributions from nonequilibrium electrons and phonons by taking only the δn term or δN term

in Σ
(a)el−ph
ϕ,ε . The temporal variations of these terms are shown in Fig. 2. This result indicates

that the δN term has a sufficient contribution to K(3) at a large t. This makes the relaxation

slower than that in the case of δN = 0.

Here, we examine the question as to whether the nonlinear response is proportional to

the nonequilibrium electron density. The temporal variation of the integrated nonequilibrium

electron density, which is written as 〈δnε(t)〉 =
∫∞
0 dε

∫

FS
2ε√

ε2−∆2
ϕ

δnε(t), is shown in Fig. 3.

In the case of δN = 0, 〈δn〉 shows the exponential decay for high T/Tc, as K(3) does. For

low T/Tc, 〈δn〉 does not show the same t-dependence as K(3). Therefore, in the region of
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the nonexponential decay, there is no proportionality between the nonlinear response and

nonequilibrium electron density, which is different from the assumption adopted in previous

studies. The similarity in relaxation dynamics between these two quantities is limited to the

region of the exponential decay. In the case of δN 6= 0, 〈δn〉 does not decrease to 0, but it

varies toward the nonequilibrium steady state. This state is rapidly achieved for high T/Tc as

for 〈δn〉. The increase of 〈δn〉 with t at low T/Tc is understood by considering the temporal

evolution of δnε(t) (shown in Fig. 7) and the collision integral Ĩε(t) (in Figs. 6 and 9). As

discussed there, the distribution of nonequilibrium electrons is enhanced at low energies by

the absorption of phonons. (The particle conservation is satisfied because δn−ε = −δnε in our

calculation.)

Next, we investigate which of the electron-electron and electron-phonon interactions pre-

dominate in the nonlinear response. The temporal variations of K(3)el−ph and K(3)el−el are

shown in Fig. 4. For small (large) t, K(3)el−el (K(3)el−ph) is predominant in K(3). This change of

the predominant term originates from the temporal variation of the functional form of δnε(t).

δnε(t) has a broad spectrum as a function of ε at small t, and its spectrum concentrates at

low energies as time passes, as discussed below. The time at which K(3)el−el and K(3)el−ph

intersect is weakly dependent on whether phonons are in the equilibrium or nonequilibrium

state, which indicates that the effect of nonequilibrium phonons is small in this time range.

Although K(3)el−ph decreases with increasing T/Tc, K(3)el−el shows a different behavior at

large t, which also reflects the ε-dependence of δnε(t), but this behavior is not important

because K(3)el−el � K(3)el−ph at this time scale.

Hereafter, we consider the microscopic quantities that cause the above behavior of the

nonlinear response. Firstly, we show the temporal variation of the collision integral, which is
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in thermal equilibrium (δN = 0). The results at T/Tc = 0.3 are shown in the inset.

the second and third terms on the right side of eq. (7) and written as Ĩε(t) = Ĩel−ph
ε (t)+Ĩel−el

ε (t)

hereafter. As indicated above in the cases of K(3)el−el and K(3)el−ph, in the collision integral

Ĩε(t), the electron-electron interaction predominates the relaxation dynamics over the electron-

phonon interaction (roughly Ĩε(t) ' Ĩel−el
ε (t)) at small t, and it is the other way around

(Ĩε(t) ' Ĩel−ph
ε (t)) at large t. This holds irrespective of the values of T/Tc and the existence of

δN . We show the collision integral Ĩε(t) (only for ε ≥ 0 because of Ĩ−ε(t) = −Ĩε(t)) at small

t in Fig. 5 and at large t in Fig. 6. For small t, there seems to be no qualitative difference in

the ε-dependence of Ĩε between T/Tc = 0.1 and 0.3. The energy range in which Ĩε takes finite

values is broad, and it takes negative and positive values at high and low energies, respectively.

This brings about a shift in the weight of the nonequilibrium distribution function from high

energy to low energy. The results in the case of δN 6= 0 are omitted here, but they are similar

to those in the case of δN = 0. In contrast to that in the case of small t, ε-dependences of Ĩε

are different depending on the values of T/Tc and δN for large t. For T/Tc = 0.3, Ĩε becomes

negative all over the range of ε > 0. This property is the same in the case of δN 6= 0, although

its degree is small. For T/Tc = 0.1, there remains a positive part in Ĩε at low energy. The

shift in the weight of the nonequilibrium distribution function from high energy to low energy

occurs, as in the case of small t, but its energy scale becomes narrower. The result for δN 6= 0

shows that the negative part in Ĩε is small and that the decreasing rate of the positive part is

slower than that of δN = 0.

The nonequilibrium distribution functions for electrons, δnε(t), at various times t for

T/Tc = 0.1 and 0.3 in the case of δN = 0 are shown in Fig. 7. (We consider the particle-hole

symmetric case: δn−ε = −δnε.) At small t, immediately after the pump excitation, δnε(t) has

a broad spectrum. The spectrum at high energy rapidly decreases with time. This is because

the damping effect is large at high energy owing to the electron-electron interaction. Then
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δnε(t) takes a functional form, which is similar to that of the T ∗-model:23 1
eε/T∗

+1
− 1

eε/T +1
'

ε(T ∗−T )
[2T cosh(ε/2T )]2 , where T ∗ is the temperature that characterizes nonequilibrium electrons and

T ∗ > T . For T/Tc = 0.1, the shift of the spectrum from high energy to low energy occurs.

(This indicates a nonthermal state, as discussed in ref. 14, with taking account of a change in

the sign of ∂δnε/∂t ' Ĩel−ph
ε for large t.) On the other hand, δnε(t) starts to decrease all over

the range of ε > 0 after a certain t for T/Tc = 0.3. This behavior is understood by examining

the ε-dependences of the collision integral, as shown above. For δN 6= 0, these tendencies are

qualitatively the same, which is also indicated in the results of the collision integral.

The energy injected by a pump beam is transferred to the phonon system via the electron
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system. In the case of δN = 0, we presume that this energy transferred to the phonon system

dissipates by the damping effect γesc and that there is no influence on the electron system

by δN . On the other hand, δN is finite if the effect of γesc is small. The distributions of

nonequilibrium phonons ωδNω(t) at various values of t for T/Tc = 0.1 are shown in Fig. 8.

The tendency in the changes of the spectrum is similar to that observed in nonequilibrium

electrons. However, the decrease in the spectrum does not occur in a phonon system, and

nonequilibrium phonons accumulate at small ω with increasing t. For high T/Tc, δN shows a

similar but broader spectrum than that for low T/Tc.

Finally, we investigate which of the physical processes causes the nonexponential decay of

K(3) by increasing δnε. We rewrite the collision integral by the electron-phonon interaction

Ĩel−ph
ε := − 1

ḡR
ε

π
2 N0g

2
∫ φD

−φD

dφ
2π ωφIel−ph

φ,ε [δnε, δNφ] to specify the physical processes in this term.

In the case of ε > 0, Iel−ph
φ,ε is decomposed into three terms, Iel−ph

φ,ε = Ia
φ,ε + Ib

φ,ε + Ic
φ,ε, in which

each term is written as follows.

Ia
φ,ε = 2g−φ,εδ

(2)[nε(1 − nε−ωφ
)(1 + Nωφ

) − nε−ωφ
(1 − nε)Nωφ

]θ(ε − ωφ).

Ib
φ,ε = −2g+

φ,εδ
(2)[nε+ωφ

(1 − nε)(1 + Nωφ
) − nε(1 − nε+ωφ

)Nωφ
].

Ic
φ,ε = 2g−φ,εδ

(2)[nεnωφ−ε(1 + Nωφ
) − (1 − nωφ−ε)(1 − nε)Nωφ

]θ(ωφ − ε).

Here, δ(2) operates n or N ((2) indicates the order of the external fields), and then

δ(2)nε = δnε(t) and δ(2)Nωφ
= δNωφ

(t) (other n and N are replaced by n0
ε = 1/(eε/T + 1)

and N0
ωφ

= 1/(eωφ/T − 1), respectively). Each term describes the emission of phonons (Ia),

the absorption of phonons (Ib), and the recombination term (Ic), respectively. (The recom-

bination does not mean that quasiparticles recombine into Cooper pairs, as the misleading

picture in ref. 11 suggests. This term exists in the case of the electron-phonon interaction for

d-wave superconductors.) We substitute these terms into the above collision integral Ĩel−ph
ε ,
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and write each term as Ĩa,b,c
ε .

The energy dependences of Ĩel−ph
ε (t) and Ĩa,b,c

ε (t) in the case of δN = 0 are shown in Fig. 9.

A scattering term (emission of phonons) Ĩa
ε and the recombination term Ĩc

ε are negative, and

another scattering term (absorption of phonons) Ĩb
ε is positive. At low T/Tc, Ĩb

ε is predominant

over Ĩa
ε + Ĩc

ε , and then the collision term Ĩel−ph
ε takes a positive value at low energy. Although

the absolute values of each term decrease with increasing T/Tc, Ĩel−ph
ε takes a negative value at

T/Tc = 0.3 because of a rapid decrease in the degree of absorption of phonons. The negative

Ĩel−ph
ε for ε > 0 brings about a decrease in δnε(t) all over ε > 0, as shown above. This

causes the exponential decay of K(3). On the other hand, the positive Ĩel−ph
ε at low energy

increases δnε(t), and then reduces the decreasing rate of K(3) as compared to that of the

exponential decay. Therefore, we regard the absorption of phonons as the main process for the

nonexponential decay of K(3). This is in contrast to the phenomenological interpretation based

on the RT equation,5 in which the recombination term causes the nonexponential relaxation

as the bimolecular decay. In the case of δN 6= 0, the energy dependences of Ĩel−ph
ε (t) and

Ĩa,b,c
ε (t) are qualitatively similar to those of δN = 0. However, in this case, the relaxation

dynamics is slower than that of δN = 0 because of the presence of δN in K(3)el−ph, as shown

above.

This predominance of the phonon-absorption term at low temperatures is restricted within

some range of time. By performing the calculation further at large t, it is found that the

recombination term becomes predominant over the absorption of phonons. At T/Tc = 0.1,

for instance, Ĩel−ph
ε (t) takes negative values in the entire range of ε > 0 at approximately

t ' 5000. Then, at about this time, 1/K(3) deviates from the t-linear behavior, and ceases to

show the nonexponential decay.
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5. Summary and Discussion

In this study, we investigated the photoinduced change in the superfluid weight in the

transient state of d-wave superconductors. We clarified how the nonexponential decay occurs.

At first, we obtained the formula that relates the nonequilibrium distribution function to the

physical response function. Although the former quantity is usually discussed in theoretical

works, it is the latter quantity that is necessary for a comparison with the experiments. In

this derivation, we found that the vertex correction is predominant and that the nonequi-

librium distribution function is effective only through this interaction term. We numerically

solved the kinetic equation for the nonequilibrium distribution function with taking account

of the electron-electron and electron-phonon interactions and substituted its solution into the

expression of the nonlinear response function.

The numerical calculation shows that the electron-phonon interaction predominates over

the electron-electron interaction in the long-time behavior. In contrast to the previous studies

based on the phenomenological RT equation, the nonexponential decay does not originate

from the bimolecular recombination. Rather, it results from the enhancement of the nonequi-

librium distribution at low energies, which is caused by the absorption of phonons. This fact

is revealed using the nonequilibrium distribution functions that couple with each other at

different energies through the interaction effect, and is not known from the RT equation in

which the quasiparticle density averaged over energy is used. This leads to an explanation

of the nonexponential decay which is consistent in terms of the order of the external field

under the condition that the pumping intensity is low. (As noted in ref. 17, this condition is

presumably satisfied in the experiment5 with reference to the excitation fluence in ref. 7.)

Finally, we comment on several problems related to but beyond the scope of this paper.

Strictly speaking, it requires numerical integration with a very small energy scale to discuss

the long-time behavior of a response function. In this paper, however, we avoided this by

performing Fourier transformation at the outset. This is achieved at the cost of accuracy

in the short-time behavior of a response function. Therefore, our formulation is not suitable

for discussing physical quantities such as the exact form of the spectrum at this time scale;

however, the results presented in this paper are not considered to be affected by these fine

structures because of the rapid smoothing by the electron-electron interaction.

There are very few experiments that probed low-energy phenomena such as the superfluid

weight reported in ref. 5. Most pump-probe experiments have been performed with the use

of an optical probe beam. The formulation in this paper is restricted to the case in which

the probe frequency is zero. The extension to a finite probe frequency is required to discuss

optical probe cases, but it will not alter the importance of the interaction effect if we consider

the case of the local limit.

The formulation based on the local limit is appropriate for cuprate superconductors as
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discussed in ref. 17. Other superconductors are also investigated by nonlinear optical spec-

troscopy, and the pump-probe experiments have been performed in iron-based superconduc-

tors (for example, ref. 24.) Infrared spectroscopy indicates that the nonlocal limit is realized

in superconductors of this kind,25 and in this case the Mattis-Bardeen formula26 is valid. It is

possible that the nonlocal limit gives a different result regarding the nonlinear response from

the local limit in which the interaction effect is essential for the optical response.
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