In the transient state of d-wave superconductors, we investigate the temporal
variation of photoinduced changes in the superfluid weight. We derive the
formula that relates the nonlinear response function to the nonequilibrium
distribution function. The latter qunatity is obtained by solving the kinetic
equation with the electron-electron and the electron-phonon interaction
included. By numerical calculations, a nonexponential decay is found at low
temperatures in contrast to the usual exponential decay at high temperatures.
The nonexponential decay originates from the nonmonotonous temporal variation
of the nonequilibrium distribution function at low energies. The main physical
process that causes this behavior is not the recombination of quasiparticles as
previous phenomenological studies suggested, but the absorption of phonons.Comment: 18 pages, 12 figures; to be published in J. Phys. Soc. Jpn. Vol. 80,
No.