329 research outputs found

    Constraints on fluid flow processes in the Hellenic Accretionary Complex (eastern Mediterranean Sea) from numerical modeling

    Get PDF
    The dynamics of accretionary convergent margins are severely influenced by intense deformation and fluid expulsion. To quantify the fluid pressure and fluid flow velocities in the Hellenic subduction system, we set up 2-D hydrogeological numerical models following two seismic reflection lines across the Mediterranean Ridge. These profiles bracket the along-strike variation in wedge geometry: moderate compression and a >4 km thick underthrust sequence in the west versus enhanced compression and <1 km of downgoing sediment in the center. Input parameters were obtained from preexisting geophysical data, drill cores, and new geotechnical laboratory experiments. A permeability-porosity relationship was determined by a sensitivity analysis, indicating that porosity and intrinsic permeability are small. This hampers the expulsion of fluids and leads to the build up of fluid overpressure in the deeper portion of the wedge and in the underthrust sediment. The loci of maximum fluid pressure are mainly controlled by the compactional fluid source, which generally decreases toward the backstop. However, pore pressure is still high at the decollement level at distances <100 km from the deformation front, either by the incorporation of low permeability evaporites or additional compaction of the wedge sediments in the two profiles. In the west, however, formation of a wide accretionary complex is facilitated by high pore pressure zones. When compared to other large accretionary complexes such as Nankai or Barbados, our results not only show broad similarities but also that near-lithostatic pore pressures may be easier to maintain in the Hellenic Arc because of accentuated collision, some underthrust evaporates, and a thicker underthrust sequence

    DAS field dataset to compare technologies and deployment scenarios – Antarctica Dataset

    Get PDF
    This report describes a Distributed Acoustic Sensing (DAS) dataset acquired by the British Antarctic Survey (BAS) and the University of Oxford in Antarctic during 2020. The field dataset contributes to the Deliverable D1.1 of the DigiMon project (DAS field dataset to compare technologies and deployment scenarios), which is associated with tasks 1.2 and 1.3 of the project

    Ignition and Environmental Effects of Wildfires as Related to Giant Impacts

    Get PDF
    Soot has been discovered by Wolbach et al. at the Cretaceous-Tertiary boundary in various geographic locations, supporting the theory that worldwide wildfires were ignited by the impact of a giant meteorite which caused the mass extinction 65 million years ago. This project examines a deep sea core sample from the North Central Pacific Ocean for evidence of soot. Soot discovery at this site, the only deep ocean site to be studied, supports the theory that soot distribution from the fires was worldwide. In another project, samples from the suevite breccia of the Kara Ust-Kara craters in Russia (unrelated to the KT impact) were examined for\u27 soot to find evidence of fires triggered by a different impact. After demineralization to remove the minerals in the rock, reduced carbon was found in both the core and crater samples. Oxidation in dichromate solution removed the organic carbon (kerogen) form the samples. Analysis of the post-oxidation residues under a scanning electron microscope confirmed the presence of soot in both the core and crater samples

    Hardy-Carleman Type Inequalities for Dirac Operators

    Full text link
    General Hardy-Carleman type inequalities for Dirac operators are proved. New inequalities are derived involving particular traditionally used weight functions. In particular, a version of the Agmon inequality and Treve type inequalities are established. The case of a Dirac particle in a (potential) magnetic field is also considered. The methods used are direct and based on quadratic form techniques

    The Devastating 2022 M6.2 Afghanistan Earthquake: Challenges, Processes, and Implications

    Get PDF
    On June 21st, a Mw6.2 earthquake struck the Afghan-Pakistan-border-region, situated within the India-Asia collision. Thousand thirty-nine deaths were reported, making the earthquake the deadliest of 2022. We investigate the event\u27s rupture processes by combining seismological and geodetic observations, aiming to understand what made it that fatal. Our Interferometric Synthetic Aperture Radar-constrained slip-model and regional moment-tensor inversion, confirmed through field observations, reveal a sinistral rupture with maximum slip of 1.8 m at 5 km depth on a N20°E striking, sub-vertical fault. We suggest that not only external factors (event-time, building stock) but fault-specific factors made the event excessively destructive. Surface rupture was favored by the rock foliation, coinciding with the fault strike. The distribution of Peak-Ground-Velocity was governed by the sub-vertical fault. Maximum slip was large compared to other events globally and might have resulted in peak-frequencies coinciding with resonance-frequencies of the local buildings and demonstrates the devastating impact of moderate-size earthquakes

    On the existence of solutions to the relativistic Euler equations in 2 spacetime dimensions with a vacuum boundary

    Full text link
    We prove the existence of a wide class of solutions to the isentropic relativistic Euler equations in 2 spacetime dimensions with an equation of state of the form p=Kρ2p=K\rho^2 that have a fluid vacuum boundary. Near the fluid vacuum boundary, the sound speed for these solutions are monotonically decreasing, approaching zero where the density vanishes. Moreover, the fluid acceleration is finite and bounded away from zero as the fluid vacuum boundary is approached. The existence results of this article also generalize in a straightforward manner to equations of state of the form p=Kργ+1γp=K\rho^\frac{\gamma+1}{\gamma} with γ>0\gamma > 0.Comment: A major revision of the second half of the pape

    Highly variable friction and slip observed at Antarctic ice stream bed

    Get PDF
    The slip of glaciers over the underlying bed is the dominant mechanism governing the migration of ice from land into the oceans, with accelerating slip contributing to sea-level rise. Yet glacier slip remains poorly understood, and observational constraints are sparse. Here we use passive seismic observations to measure both frictional shear stress and slip at the bed of the Rutford Ice Stream in Antarctica using 100,000 repetitive stick-slip icequakes. We find that basal shear stresses and slip rates vary from 104^4 to 107^7 Pa and 0.2 to 1.5 m per day, respectively. Friction and slip vary temporally over the order of hours, and spatially over 10s of metres, due to corresponding variations in effective normal stress and ice–bed interface material. Our findings suggest that the bed is substantially more complex than currently assumed in ice stream models and that basal effective normal stresses may be significantly higher than previously thought. Our observations can provide constraints on the basal boundary conditions for ice-dynamics models. This is critical for constraining the primary contribution of ice mass loss in Antarctica and hence for reducing uncertainty in sea-level rise projections

    Geometric extensions of many-particle Hardy inequalities

    Full text link
    Certain many-particle Hardy inequalities are derived in a simple and systematic way using the so-called ground state representation for the Laplacian on a subdomain of Rn\mathbb{R}^n. This includes geometric extensions of the standard Hardy inequalities to involve volumes of simplices spanned by a subset of points. Clifford/multilinear algebra is employed to simplify geometric computations. These results and the techniques involved are relevant for classes of exactly solvable quantum systems such as the Calogero-Sutherland models and their higher-dimensional generalizations, as well as for membrane matrix models, and models of more complicated particle interactions of geometric character.Comment: Revised version. 28 page

    Maximal, potential and singular operators in the local "complementary" variable exponent Morrey type spaces

    Get PDF
    We consider local "complementary" generalized Morrey spaces M-c({x0})p(.).omega (Omega) in which the p-means of function are controlled over Omega \ B(x(0), r) instead of B(x(0), r), where Omega subset of R-n is a bounded open set, p(x) is a variable exponent, and no monotonicity type condition is imposed onto the function omega(r) defining the "complementary" Morrey-type norm. In the case where omega is a power function, we reveal the relation of these spaces to weighted Lebesgue spaces. In the general case we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev type M-c({x0})p(.).omega (Omega) -> M-c({x0})p(.).omega (Omega)-theorem for the potential operators I-alpha(.), also of variable order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type integral inequalities-on omega(r), which do not assume any assumption on monotonicity of omega(r).Science Development Foundation under the President of the Republic of Azerbaijan [EIF-2010-1(1)-40/06-1]; Scientific and Technological Research Council of Turkey (TUBITAK) [110T695]info:eu-repo/semantics/publishedVersio
    corecore