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a b s t r a c t

We consider local ‘‘complementary’’ generalized Morrey spaces
{
M

p(·),ω
{x0}

(Ω) in which the
p-means of function are controlled over Ω \ B(x0, r) instead of B(x0, r), where Ω ⊂ Rn

is a bounded open set, p(x) is a variable exponent, and no monotonicity type condition
is imposed onto the function ω(r) defining the ‘‘complementary’’ Morrey-type norm. In
the case where ω is a power function, we reveal the relation of these spaces to weighted
Lebesgue spaces. In the general case we prove the boundedness of the Hardy–Littlewood
maximal operator and Calderon–Zygmund singular operators with standard kernel, in

such spaces. We also prove a Sobolev type
{
M

p(·),ω
{x0}

(Ω) →
{
M

q(·),ω
{x0}

(Ω)-theorem for the
potential operators Iα(·), also of variable order. In all the cases the conditions for the
boundedness are given it terms of Zygmund-type integral inequalities on ω(r), which do
not assume any assumption on monotonicity of ω(r).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the study of local properties of solutions to of partial differential equations, together with weighted Lebesgue spaces,
Morrey spaces Lp,λ(Rn) play an important role, see [1]. Introduced by Morrey [2] in 1938, they are defined by the norm

∥f ∥Lp,λ := sup
x,r>0

r−
λ
p ∥f ∥Lp(B(x,r)), (1.1)

where 0 ≤ λ < n, 1 ≤ p < ∞.
We refer in particular to [3] for the classical Morrey spaces. As is known, in the last two decades there has been increasing

interest in the study of variable exponent spaces and operatorswith variable parameters in such spaces, we refer for instance
to the surveying papers [4–7] and the recent book [8] on the progress in this field, see also references therein.

The spaces defined by the norm (1.1) are sometimes called globalMorrey spaces, in contrast to localMorrey spaces defined
by the norm

∥f ∥
L

p,λ
{x0}

:= sup
r>0

r−
λ
p ∥f ∥Lp(B(x0,r)). (1.2)
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Variable exponent Morrey spaces Lp(·),λ(·)(Ω), were introduced and studied in [9,10] in the Euclidean setting and in [11]
in the setting of metric measure spaces, in case of bounded sets Ω . In [9] the boundedness of the maximal operator in
variable exponent Morrey spaces Lp(·),λ(·)(Ω) was proved and a Sobolev–Adams type Lp(·),λ(·)

→ Lq(·),λ(·)-theorem for
potential operators of variable order α(x). In the case of constant α, the Lp(·),λ(·)

→ BMO-boundedness in the limiting case
p(x) =

n−λ(x)
α

was also proved. In [10] the maximal operator and potential operators were considered in a somewhat more
general space, but under more restrictive conditions on p(x). Hästö in [12] used his ‘‘local-to-global’’ approach to extend the
result of [9] on the maximal operator to the case of the whole space Rn.

In [11] the boundedness of the maximal operator and the singular integral operator in variable exponent Morrey spaces
Lp(·),λ(·) was proved in the general setting of metric measure spaces. In the case of constant p and λ, the results on the
boundedness of potential operators and classical Calderon–Zygmund singular operators go back to [13,14], respectively,
while the boundedness of the maximal operator in the Euclidean setting was proved in [15]; for further results in the case
of constant p and λ see for instance [16–19].

In [20]we studied the boundedness of the classical integral operators in the generalized variable exponentMorrey spaces
Mp(·),ϕ(Ω) over an open bounded set Ω ⊂ Rn. Generalized Morrey spaces of such a kind in the case of constant p, with the
norm (1.1) replaced by

∥f ∥Mp,ϕ := sup
x,r>0

r−
n
p

ϕ(r)
∥f ∥Lp(B(x,r)), (1.3)

under some assumptions onϕ were studied bymany authors, see for instance [21–26] and references therein. Results of [20]
were extended in [27] to the case of the generalizedMorrey spacesMp(·),θ(·),ω(·)(Ω) (where the L∞-norm in r in the definition
of theMorrey space is replaced by the Lebesgue Lθ -norm), we refer to [28] for such spaces in the case of constant exponents.

In [29] (see, also [30]) local ‘‘complementary’’ generalized Morrey spaces
{
M

p,ω
{x0}(Ω), Ω ⊆ Rn were introduced and

studied, with constant p ∈ [1, ∞), the space of all functions f ∈ Lploc(Ω \ {x0}) with the finite norm

∥f ∥ {
M

p,ω
{x0}(Ω)

= sup
r>0

r
n
p′

ω(r)
∥f ∥Lp(Ω\B(x0,r)).

For the particular case when ω is a power function [29,30], see also [31,32], we find it convenient to keep the traditional

notation
{
L

p,λ
{x0}(Ω) for the space defined by the norm

∥f ∥ {
L

p,λ
{x0}(Ω)

= sup
r>0

r
λ
p′ ∥f ∥Lp(Rn\B(x0,r)) < ∞, x0 ∈ Ω, 0 ≤ λ < n. (1.4)

Obviously, we recover the space
{
L

p,λ
{x0}(Ω) from

{
M

p,ω
{x0}(Ω) under the choice ω(r) = r

n−λ
p′ .

In contrast to the Morrey space, where one measures the regularity of a function f near the point x0 (in the case of local
Morrey spaces) and near all points x ∈ Ω (in the case of global Morrey spaces), the norm (1.4) is aimed to measure a ‘‘bad’’
behavior of f near the point x0 in terms of the possible growth of ∥f ∥Lp(Ω\B(x0,r)) as r → 0. Correspondingly, one admits
ϕ(0) = 0 in (1.3) and ω(0) = ∞ in (1.4).

In this paper we consider local ‘‘complementary’’ generalized Morrey spaces
{
M

p(·),ω
{x0} (Ω) with variable exponent p(·),

see Definition 4.1. However, we start with the case of constant p and in this case reveal an intimate connection of the
complementary spaces with weighted Lebesgue spaces. In the case where ω(r) is a power function, we show that the space
{
L

p,λ
{x0}(Ω) is embedded between the weighted space Lp(Ω, |x − x0|λ(p−1)) and its weak version, but does not coincide with

either of them, which elucidates the nature of these spaces.

In the general case, for the spaces
{
M

p(·),ω
{x0} (Ω) over bounded sets Ω ⊂ Rn we consider the following operators:

(1) the Hardy–Littlewood maximal operator

Mf (x) = sup
r>0

1
|B(x, r)|


B(x,r) |f (y)|dy

(2) variable order potential type operators

Iα(x)f (x) =


Ω

f (y) dy
|x − y|n−α(x)

,

(3) variable order fractional maximal operator

Mα(x)f (x) = sup
r>0

1

|B(x, r)|1−
α(x)
n


B(x,r) |f (y)|dy,

where 0 < infα(x) ≤ supα(x) < n, and
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(4) Calderon–Zygmund type singular operator

Tf (x) =


Ω

K(x, y)f (y)dy

with a ‘‘standard’’ singular kernel in the sense of R. Coifman and Y. Meyer, see for instance [33, p. 99].

We find conditions on the pair of functions ω1(r) and ω2(r) for the p(·) → p(·)-boundedness of the operators M and T

from a variable exponent local ‘‘complementary’’ generalized Morrey space
{
M

p(·),ω1
{x0} (Ω) into another one

{
M

p(·),ω2
{x0} (Ω),

and for the corresponding Sobolev p(·) → q(·)-boundedness for the potential operators Iα(·), under the log-condition
on p(·).

The paper is organized as follows.

In Section 2 we start with the case of the spaces
{
L

p,λ
{x0}(Ω) with constant p and show their relation to the weighted

Lebesgue space Lp(Ω, |x − x0|λ(p−1)). The main statements are given in Theorem 2.1. In Section 3 we provide necessary
preliminaries on variable exponent Lebesgue and Morrey spaces. In Section 4 we introduce the local ‘‘complementary’’
generalized Morrey spaces with variable exponents and recall some facts known for generalized Morrey spaces with
constant p. In Section 5 we deal with the maximal operator, while potential operators are studied in Section 6. In Section 7
we treat Calderon–Zygmund singular operators.

The main results are given in Theorems 5.2, 6.2 and 7.2. We emphasize that the results we obtain for generalized Morrey
spaces are new even in the case when p(x) is constant, because we do not impose any monotonicity type condition on ω(r).

Notation:

Rn is the n-dimensional Euclidean space,
Ω ⊂ Rn is an open set, ℓ = diam Ω;
χE(x) is the characteristic function of a set E ⊆ Rn;
B(x, r) = {y ∈ Rn

: |x − y| < r}, B(x, r) = B(x, r) ∩ Ω;

by c, C, c1, c2 etc., we denote various absolute positive constants, which may have different values even in the same line.

2. Relations of the ‘‘complementary’’ Morrey spaces {
L

p,λ
{x0}(Ω) with weighted Lebesgue spaces; the case of constant p

We use the standard notation Lp(Ω, ϱ) =

f :


Ω
ϱ(y)|f (y)|p dy < ∞


, where ϱ is a weight function. For the space

{
L

p,λ
{x0}(Ω) defined in (1.4), the following statement holds.

Theorem 2.1. Let Ω be a bounded open set, 1 ≤ p < ∞, 0 ≤ λ ≤ n and A > ℓ. Then

Lp(Ω, |y − x0|λ(p−1)) ↩→
{
L

p,λ

{x0}(Ω) ↩→

ε>0

Lp

Ω,
|y − x0|λ(p−1)
ln A

|y−x0|

1+ε

 (2.1)

where both the embeddings are strict, with the counterexamples f (x) =
1

|x−x0|
n
p +

λ
p′

and g(x) =
ln

ln B

|x−x0 |


|x−x0|

n
p +

λ
p′

, B > ℓee:

f ∈
{
L

p,λ

{x0}(Ω), but f ∉ Lp(Ω, |y − x0|λ(p−1)),

and

g ∈


ε>0

Lp

Ω,
|y − x0|λ(p−1)
ln A

|y−x0|

1+ε

 , but g ∉
{
L

p,λ
{x0}

(Ω).

Proof.
10. The left-hand side embedding.
Denote ν = λ(p − 1). For all 0 < r < ℓ we have

Ω

|y − x0|ν |f (y)|p dy
 1

p

≥


Ω\B(x0,r) |y − x0|ν |f (y)|p dy

 1
p

≥ r
ν
p


Ω\B(x0,r) |f (y)|p dy

 1
p

. (2.2)
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Thus ∥f ∥Lp(Ω,|y−x0|ν ) ≥ r
λ
p′ ∥f ∥LpΩ\B(x0,r) and then

∥f ∥Lp(Ω,|y−x0|ν ) ≥ ∥f ∥ {
L

p,λ
{x0}(Ω)

.

20. The right-hand side embedding.
We take x0 = 0 for simplicity and denote wε(|y|) =

|y|λ(p−1)
ln A

|y|

1+ε . We have


B(x0,t) |f (y)|pwε(|y|)dy =


B(x0,t) |f (y)|p


|y|

0

d
ds

wε(s)ds

dy, (2.3)

with

w′

ε(t) = tλ(p−1)−1


λ(p − 1)
ln A

t

1+ε
+

(1 + ε)
ln A

t

2+ε


≥ 0.

Therefore,
B(x0,t) |f (y)|pwε(|y|)dy =

 t

0
w′

ε(s)


{y∈Ω:s<|x0−y|<t}
|f (y)|pdy


ds

≤

 ℓ

0
w′

ε(s)∥f ∥
p
Lp(Ω\B(x0,s))ds ≤ ∥f ∥p

{
M

p,ω
{x0}(Ω)

 ℓ

0
sλ(p−1)w′

ε(s) ds

where the last integral converges when ε > 0 since sλ(p−1)w′
ε(s) ≤

C

s

ln A

s

1+ε . This completes the proof. �

30. The strictness of the embeddings.
Calculations for the function f are obvious. In case of the function g , take x0 = 0 for simplicity and denote wε(|x|) =

|x|λ(p−1)
ln A

|x|

1+ε . We have

∥f ∥p
Lp(Ω,wε)

=


Ω

lnp

ln B

|x|


|x|n


ln A

|x|

1+ε
dx ≤ C

 ℓ

0

lnp ln B
t


t

ln A

t

1+ε
dt < ∞

for every ε > 0. However, for small r ∈

0, δ

2


, where δ = dist(0, ∂Ω), we obtain

r
λ
p′ ∥f ∥Lp(Ω\B(0,r)) =

rλ(n−1)

x∈Ω: |x|>r

lnp

ln B

|x|


dx

|x|n+λ(p−1)


1
p

≥

rλ(p−1)

x∈Ω: r<|x|<δ

lnp

ln B

|x|


dx

|x|n+λ(p−1)


1
p

=


rλ(p−1)

|Sn−1
|

 δ

r

lnp ln B
t


dt

t1+λ(p−1)

 1
p

.

But  δ

r

lnp ln B
t


dt

t1+λ(p−1)
≥

 2r

r

lnp ln B
t


dt

t1+λ(p−1)
≥ lnp


ln

B
2r

 2r

r

dt
t1+λ(p−1)

= C lnp

ln

B
r


r−λ(p−1),

so that

r
λ
p′ ∥f ∥Lp(Ω\B(0,r)) ≥ C ln


ln

B
2r


→ ∞ as r → 0,

which completes the proof of the lemma.

Remark 2.2. The arguments similar to those in (2.2) show that the left-hand side embedding in (2.1) may be extended to
the case of more general spaces

{
M

p,ω
{x0}(Ω):

Lp(Ω, ρ(|y − x0|)) ↩→
{
M

p,ω

{x0}(Ω)

where ρ is a positive increasing (or almost increasing) function such that infr>0
ρ(r)ωp(r)
rn(p−1) > 0.
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3. Preliminaries on variable exponent Lebesgue and Morrey spaces

We refer to the book [8] for variable exponent Lebesgue spaces but give some basic definitions and facts. Let p(·) be a
measurable function on Ω with values in [1, ∞). An open set Ω is assumed to be bounded throughout the whole paper. We
mainly suppose that

1 < p− ≤ p(x) ≤ p+ < ∞, (3.1)

where p− := ess infx∈Ωp(x), p+ := ess supx∈Ωp(x). By Lp(·)(Ω) we denote the space of all measurable functions f (x) on Ω

such that

Ip(·)(f ) =


Ω

|f (x)|p(x)dx < ∞.

Equipped with the norm

∥f ∥p(·) = inf

η > 0 : Ip(·)


f
η


≤ 1


,

this is a Banach function space. By p′(x) =
p(x)

p(x)−1 , x ∈ Ω , we denote the conjugate exponent.
ByWL(Ω) (weak Lipschitz) we denote the class of functions defined on Ω satisfying the log-condition

|p(x) − p(y)| ≤
A

− ln |x − y|
, |x − y| ≤

1
2
x, y ∈ Ω, (3.2)

where A = A(p) > 0 does not depend on x, y.

Theorem 3.1 ([34]). Let Ω ⊂ Rn be an open bounded set and p ∈ WL(Ω) satisfy condition (3.1). Then the maximal operator M
is bounded in Lp(·)(Ω).

The following theorem was proved in [35] under the condition that the maximal operator is bounded in Lp(·)(Ω), which
became an unconditional result after the result of Theorem 3.1.

Theorem 3.2. Let Ω ⊂ Rn be bounded, p, α ∈ WL(Ω) satisfy assumption (3.1) and the conditions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x)p(x) < n. (3.3)

Then the operator Iα(·) is bounded from Lp(·)(Ω) to Lq(·)(Ω) with 1
q(x) =

1
p(x) −

α(x)
n .

Singular operators within the framework of the spaces with variable exponents were studied in [36]. From Theorem 4.8
andRemark 4.6 of [36] and the known results on the boundedness of themaximal operator,wehave the following statement,
which is formulated below for our goals for a bounded Ω , but valid for an arbitrary open set Ω under the corresponding
condition on p(x) at infinity.

Theorem 3.3 ([36]). Let Ω ⊂ Rn be a bounded open set and p ∈ WL(Ω) satisfy condition (3.1). Then the singular integral
operator T is bounded in Lp(·)(Ω).

The estimate provided by the following lemma (see [35, Corollary to Lemma 3.22]) is crucial for our further proofs.

Lemma 3.4. Let Ω be a bounded domain and p satisfy the condition (3.2) and 1 ≤ p− ≤ p(x) ≤ p+ < ∞. Let also supx∈Ω

ν(x) < ∞ and supx∈Ω [n + ν(x)p(x)] < 0. Then

∥ |x − ·|
ν(x)χΩ\B(x,r)(·)∥p(·) ≤ Crν(x)+ n

p(x) , x ∈ Ω, 0 < r < ℓ = diam Ω, (3.4)

where C does not depend on x and r.

Let λ(x) be a measurable function on Ω with values in [0, n]. The variable Morrey space Lp(·),λ(·)(Ω) introduced in [9],
is defined as the set of integrable functions f on Ω with the finite norm

∥f ∥Lp(·),λ(·)(Ω) = sup
x∈Ω,t>0

t−
λ(x)
p(x) ∥fχB(x,t)∥Lp(·)(Ω).

The following statements are known.

Theorem 3.5 ([9]). Let Ω be bounded and p ∈ WL(Ω) satisfy condition (3.1) and let a measurable function λ satisfy the
conditions 0 ≤ λ(x), supx∈Ω λ(x) < n. Then the maximal operator M is bounded in Lp(·),λ(·)(Ω).

Theorem 3.5was extended to unbounded domains in [12]. Note that the boundedness of themaximal operator inMorrey
spaces with variable p(x) was studied in [11] in the more general setting of quasimetric measure spaces.
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The known statements for the potential operators read as follows.

Theorem 3.6 ([9]; Spanne-Type Result). Let Ω be bounded, p, α ∈ WL(Ω) and p satisfy condition (3.1). Let also λ(x) ≥ 0, the
conditions (3.3) be fulfilled and 1

q(x) =
1

p(x) −
α(x)
n . Then the operator Iα(·) is bounded from Lp(·),λ(·)(Ω) to Lq(·),µ(·)(Ω), where

µ(x)
q(x) =

λ(x)
p(x) .

Theorem 3.7 ([9]; Adams-Type Result). Let Ω be bounded, p, α ∈ WL(Ω) and p satisfy condition (3.1). Let also λ(x) ≥ 0 and
the conditions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

[λ(x) + α(x)p(x)] < n (3.5)

hold. Then the operator Iα(·) is bounded from Lp(·),λ(·)(Ω) to Lq(·),λ(·)(Ω), where 1
q(x) =

1
p(x) −

α
n−λ(x) .

4. Variable exponent local ‘‘complementary’’ generalized Morrey spaces

Everywhere in the sequel the functionsω(r), ω1(r) andω2(r) used in the body of the paper, are non-negativemeasurable
function on (0, ℓ), ℓ = diamΩ . Without loss of generality we may assume that they are bounded beyond any small
neighborhood (0, δ) of the origin.

The local generalizedMorrey space M
p(·),ω
{x0}

(Ω) and global generalizedMorrey spaces Mp(·),ω(Ω)with variable exponent
are defined (see [20]) by the norms

∥f ∥
M

p(·),ω
{x0}

= sup
r>0

r−
n

p(x0)

ω(r)
∥f ∥Lp(·)(B(x0,r)),

∥f ∥Mp(·),ω = sup
x∈Ω,r>0

r−
n

p(x)

ω(r)
∥f ∥Lp(·)(B(x,r)),

where x0 ∈ Ω and 1 ≤ p(x) ≤ p+ < ∞ for all x ∈ Ω .
We find it convenient to introduce the variable exponent version of the local ‘‘complementary’’ space as follows (compare

with (1.4)).

Definition 4.1. Let x0 ∈ Ω, 1 ≤ p(x) ≤ p+ < ∞. The variable exponent generalized local ‘‘complementary’’ Morrey space
{
M

p(·),ω
{x0} (Ω) is defined by the norm

∥f ∥ {
M

p(·),ω
{x0}

= sup
r>0

r
n

p′(x0)

ω(r)
∥f ∥Lp(·)(Ω\B(x0,r)).

Similarly to the notation in (1.4), we introduce the following particular case of the space
{
M

p(·),ω
{x0} (Ω), defined by the

norm

∥f ∥ {
L

p(·),λ
{x0} (Ω)

= sup
r>0

r
λ
p′ ∥f ∥Lp(·)(Ω\B(x0,r)) < ∞, x0 ∈ Ω, 0 ≤ λ < n. (4.1)

Everywhere in the sequel we assume that

sup
0<r<ℓ

r
n

p′(x0)

ω(r)
< ∞, ℓ = diam Ω, (4.2)

which makes the space
{
M

p(·),ω
{x0} (Ω) non-trivial, since it contains Lp(·)(Ω) in this case.

Remark 4.2. Suppose that

inf
δ<r<ℓ

r
n

p′(x0)

ω(r)
> 0

for every δ > 0. Then

∥f ∥ {
M

p(·),ω
{x0} (Ω)

∼ ∥f ∥ {
M

p(·),ω
{x0} (B(x0,δ))

+ ∥f ∥Lp(·)(Ω\B(x0,δ))

(with the constants in the above equivalence depending on δ). Since δ > 0 is arbitrarily small, the space
{
M

p(·),ω
{x0} (Ω)

may be interpreted as the space of functions whose restrictions onto an arbitrarily small neighborhood B(x0, δ) are in local
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‘‘complementary’’ Morrey space
{
M

p(·),ω
{x0} (B(x0, δ)) with the exponent p(·) close to the constant value p(x0) and the restrictions

onto the exterior Ω \ B(x0, δ) are in the variable exponent Lebesgue space Lp(·).

If also inf0<r<ℓ
r

n
p′(x0)

ω(r) > 0, then
{
M

p(·),ω
{x0} (Ω) = Lp(·)(Ω). Therefore, to guarantee that the ‘‘complementary’’ space

{
M

p(·),ω
{x0} (Ω) is strictly larger than Lp(·)(Ω), one should be interested in the cases where

lim
r→0

r
n

p′(x0)

ω(r)
= 0. (4.3)

Clearly, the space
{
M

p(·),ω
{x0} (Ω) may contain functions with a non-integrable singularity at the point x0, if no additional

assumptions are introduced. To study the operators in
{
M

p(·),ω
{x0} (Ω), we need its embedding into L1(Ω). The corollary below

shows that the Dini condition on ω is sufficient for such an embedding.

Lemma 4.3. Let f ∈ Lp(·)(Ω \B(x0, s)) for every s ∈ (0.ℓ) and γ ∈ R. Then
B(x0,t) |y − x0|γ |f (y)|dy ≤ C

 t

0
s
γ+

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds (4.4)

for every t ∈ (0, ℓ), where C does not depend on f , t and x0.

Proof. We use the following trick, where the parameter β > 0 which will be chosen later:
B(x0,t) |y − x0|γ |f (y)|dy = β


B(x0,t) |x0 − y|γ−β

|f (y)|


|x0−y|

0
sβ−1ds


dy

= β

 t

0
sβ−1


{y∈Ω:s<|x0−y|<t}

|x0 − y|γ−β
|f (y)|dy


ds. (4.5)

Hence
B(x0,t) |f (y)|dy ≤ C

 t

0
sβ−1

∥f ∥Lp(·)(Ω\B(x0,s)) ∥ |x0 − y|γ−β
∥Lp′(·)(Ω\B(x0,s))ds.

Now we make use of Lemma 3.4 which is possible if we choose β > max

0, n

p′
−

+ γ

and then arrive at (4.4). �

Corollary 4.4. The following embeddings hold

Lp(·)(Ω) ↩→
{
M

p(·),ω

{x0} (Ω) ↩→ L1(Ω) (4.6)

where the left-hand side embedding is guaranteed by the condition (4.2) and the right-hand side one by the condition ℓ

0

ω(r) dr
r

< ∞. (4.7)

Proof. The statement for the left-hand side embedding is obvious. The right-hand side follows from Lemma 4.3 with γ = 0
and the inequality ℓ

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr ≤ ∥f ∥ {

M
p(·),ω
{x0} (Ω)

 ℓ

0
ω(r)

dr
r

. � (4.8)

Remark 4.5. Note that similarly to the arguments in the proof of Corollary 4.4, we can see that the condition ℓ

0 ω(r)rγ−1 dr < ∞, γ ∈ R, guarantees the embedding
{
M

p(·),ω
{x0} (Ω) ↩→ L1(Ω, |y − x0|γ ) into the weighted space;

note that only the values γ > −n/p′(x0) may be of interest for us, because the above condition with γ ≤ −n/p′(x0) is not

compatible with the condition (4.2) of the non-triviality of the space
{
M

p(·),ω
{x0} (Ω).

Remark 4.6. We also find it convenient to give a condition for f ∈ L1(Ω) in the form as follows: ℓ

0
t

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,t))dt < ∞ H⇒ f ∈ L1(Ω), (4.9)

for which it suffices to refer to (4.4).
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In the sequel all the operators under consideration (maximal, singular and potential operators) will be considered on

function f either satisfying the condition of the existence of the integral in (4.9), or belonging to
{
M

p(·),ω
{x0} (Ω)withω satisfying

the condition (4.7). Such functions are therefore integrable onΩ in both the cases, and consequently all the studied operators
exist on such functions a.e.

Note that the statements on the boundedness of the maximal, singular and potential operators in the ‘‘complementary’’
Morrey spaces known for the case of the constant exponent p, obtained in [29], read as follows. Note that the theorems
below do not assume no monotonicity type conditions on the functions ω, ω1 and ω2.

Theorem 4.7 ([29, Theorem 1.4.6]). Let 1 < p < ∞, x0 ∈ Rn and ω1(r) and ω2(r) be positive measurable functions satisfying
the condition r

0
ω1(t)

dt
t

≤ c ω2(r)

with c > 0 not depending on r > 0. Then the operators M and T are bounded from
{
M

p,ω1
{x0} (Rn) to

{
M

p,ω2
{x0} (Rn).

Corollary 4.8 ([29]). Let 1 < p < ∞, x0 ∈ Rn and 0 ≤ λ < n. Then the operatorsM and T are bounded in the space
{
L

p,λ
{x0}(R

n).

Theorem 4.9 ([29, Theorem 1.3.9]). Let 0 < α < n, 1 < p < ∞, 1
q =

1
p −

α
n , x0 ∈ Rn and ω1(r), ω2(r) be positive measurable

functions satisfying the condition

rα

 r

0
ω1(t)

dt
t

≤ c ω2(r),

with c > 0 not depending on r > 0. Then the operators Mα and Iα are bounded from
{
M

p,ω1
{x0} (Rn) to

{
M

q,ω2
{x0} (Rn).

Corollary 4.10 ([29]). Let 0 < α < n, 1 < p < n
α
, x0 ∈ Rn and 1

p −
1
q =

α
n and λ

p′ =
µ

q′ . Then the operators Mα and Iα are

bounded from
{
L

p,λ
{x0}(R

n) to
{
L

q,µ
{x0}(R

n).

Remark 4.11. The introduction of global ‘‘complementary’’ Morrey-type spaces has no big sense, neither in case of constant
exponents, nor in the case of variable exponents. In the case of constant exponents this was noted in [37, pp. 19–20]; in this
case the global space defined by the norm

sup
x∈Ω,r>0

r
n
p

ω(r)
∥f ∥Lp(Ω\B(x,r))

reduces to Lp(Ω) under the assumption (4.2). In the case of variable exponents there happens the same. In general, to

make it clear, note that for instance under the assumption (4.3) if we admit that supr>0
r

n
p(·)

ω(r) ∥f ∥Lp(Ω\B(x,r)) for two different
points x = x0 and x = x1, x0 ≠ x1, this would immediately imply that f ∈ Lp(·) in a neighborhood of both the points x0
and x1.

5. The maximal operator in the spaces {
M

p(·),ω
{x0} (Ω)

The proof of the main result of this section presented in Theorem 5.2 is based on the estimate given in the following
preliminary theorem.

Theorem 5.1. Let Ω be bounded, p ∈ WL(Ω) satisfy the condition (3.1) and f ∈ Lp(·)(Ω \B(x0, r)) for every r ∈ (0, ℓ). If the
integral ℓ

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr (5.1)

converges, then

∥Mf ∥Lp(·)(Ω\B(x0,t)) ≤ Ct
−

n
p′(x0)

 t

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr (5.2)

for every t ∈ (0, ℓ), where C does not depend on f , t and x0.
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Proof. We represent f as

f = f1 + f2, f1(y) = f (y)χΩ\B(x0,t)(y) f2(y) = f (y)χB(x0,t)(y). (5.3)

1o. Estimation of Mf1. This case is easier, being treated by means of Theorem 3.1. Obviously f1 ∈ Lp(·)(Ω) so that by
Theorem 3.1

∥Mf1∥Lp(·)(Ω\B(x0,t)) ≤ ∥Mf1∥Lp(·)(Ω) ≤ C∥f1∥Lp(·)(Ω) = C∥f ∥Lp(·)(Ω\B(x0,t)). (5.4)

By the monotonicity of the norm ∥f ∥Lp(·)(Ω\B(x0,r)) with respect to r we have

∥f ∥Lp(·)(Ω\B(x0,t)) ≤ Ct
−

n
p′(x0)

 t

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr (5.5)

and then

∥Mf1∥Lp(·)(Ω\B(x0,t)) ≤ Ct
−

n
p′(x0)

 t

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr.

2o. Estimation of Mf2. This case needs the application of Lemma 4.3. To estimate Mf2(z) by means of (4.4), we observe
that for z ∈ Ω \B(x0, 2t) we have

Mf2(z) = sup
r>0

|B(z, r)|−1

B(z,r) |f2(y)|dy

≤ sup
r≥t


B(x0,t)∩B(z,r)

|y − z|−n
|f (y)|dy

≤ 2n
|x0 − z|−n


B(x0,t) |f (y)|dy.

Then by (4.4)

Mf2(z) ≤ C |x0 − z|−n
 t

0
s

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds. (5.6)

Therefore

∥Mf2∥Lp(·)(Ω\B(x0,2t)) ≤ C
 t

0
s

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds |x0 − z|−n


Lp(·)(Ω\B(x0,2t))

≤ Ct
−

n
p′(x0)

 t

0
s

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds. (5.7)

Since ∥Mf ∥Lp(·)(Ω\B(x0,2t)) ≤ ∥Mf1∥Lp(·)(Ω\B(x0,2t)) + ∥Mf2∥Lp(·)(Ω\B(x0,2t)), from (5.6) and (5.7)we arrive at (5.2) with
∥Mf ∥Lp(·)(Ω\B(x0,2t)) on the left-hand side and then (5.2) obviously holds also for ∥Mf ∥Lp(·)(Ω\B(x0,t)). �

The following theorem for the complementary Morrey spaces is, in a sense, a counterpart to Theorem 3.5 formulated in
Section 3 for the usual Morrey spaces.

Theorem 5.2. Let Ω ⊂ Rn be an open bounded set, p ∈ WL(Ω) satisfy the assumption (3.1) and the functions ω1(t) and ω2(t)
satisfy the condition t

0
ω1(r)

dr
r

≤ C ω2(t), (5.8)

where C does not depend on t. Then the maximal operator M is bounded from the space
{
M

p(·),ω1
{x0} (Ω) to the space

{
M

p(·),ω2
{x0} (Ω).

Proof. For f ∈
{
M

p(·),ω1
{x0} (Ω) we have

∥Mf ∥ {
M

p(·),ω2
{x0} (Ω)

= sup
t∈(0,ℓ)

t
n

p′(x0)

ω2(t)
∥Mf ∥Lp(·)(Ω\B(x0,t)),

where Theorem 5.1 is applicable to the norm ∥Mf ∥Lp(·)(Ω\B(x0,t)). Indeed from (5.8) it follows that the integral
 t
0

ω1(r)
r dr

converges. This implies that for f ∈
{
M

p(·),ω1
{x0} (Ω) the assumption of the convergence of the integral of type (5.1) is fulfilled

by (4.8). Then by Theorem 5.1 we obtain

∥Mf ∥ {
M

p(·),ω2
{x0} (Ω)

≤ C sup
0<t≤ℓ

ω−1
2 (t)

 t
0 r

−
n

p′(x0)
−1

∥f ∥Lp(·)(Ω\B(x0,r))dr.
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Hence

∥Mf ∥ {
M

p(·),ω2
{x0} (Ω)

≤ C∥f ∥ {
M

p(·),ω1
{x0} (Ω)

sup
t∈(0,ℓ)

1
ω2(t)

 t

0
ω1(r)

dr
r

≤ C∥f ∥ {
M

p(·),ω1
{x0} (Ω)

by (5.8), which completes the proof. �

Corollary 5.3. Let Ω ⊂ Rn be an open bounded set, x0 ∈ Ω, 0 ≤ λ < n, λ ≤ µ ≤ n and let p ∈ WL(Ω) satisfy the

assumption (3.1). Then the operator M is bounded from the space
{
L

p(·),λ
{x0} (Ω) to

{
L

p(·),µ
{x0} (Ω).

6. Riesz potential operator in the spaces {
M

p(·),ω
{x0} (Ω)

In this section we extend Theorem 4.9 to the variable exponent setting. Note that Theorems 6.1 and 6.2 in the case of
constant exponent p were proved in [29, Theorems 1.3.2 and 1.3.9] (see also [30, p. 112,129]).

Theorem 6.1. Let (3.1) be fulfilled and p(·), α(·) ∈ WL(Ω) satisfy the conditions in (3.3). If f is such that the integral (5.1) con-
verges, then

∥Iα(·)f ∥Lq(·)(Ω\B(x0,t)) ≤ Ct
−

n
p′(x0)

 t

0
s

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds (6.1)

for every f ∈ Lp(·)(Ω \B(x0, t)), where

1
q(x)

=
1

p(x)
−

α(x)
n

(6.2)

and C does not depend on f , x0 and t ∈ (0, ℓ).

Proof. We represent the function f in the form f = f1 + f2 as in (5.3) so that

∥Iα(·)f ∥Lq(·)(Ω\B(x0,2t)) ≤ ∥Iα(·)f1∥Lq(·)(Ω\B(x0,2t)) + ∥Iα(·)f2∥Lq(·)(Ω\B(x0,2t)).
Since f1 ∈ Lp(·)(Ω), by Theorem 3.2 we have

∥Iα(·)f1∥Lq(·)(Ω\B(x0,2t)) ≤ ∥Iα(·)f1∥Lq(·)(Ω) ≤ C∥f1∥Lp(·)(Ω) = C∥f ∥Lp(·)(Ω\B(x0,t))
and then

∥Iα(·)f1∥Lq(·)(Ω\B(x0,2t)) ≤ Ct
−

n
p′(x0)

 t

0
s

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds (6.3)

in view of (5.5).
To estimate

∥Iα(·)f2∥Lq(·)(Ω\B(x0,2t)) =

B(x0,t) |z − y|α(z)−nf (y)dy

Lq(·)(Ω\B(x0,2t)) ,

we observe that for z ∈ Ω \B(x0, 2t) and y ∈B(x0, t) we have 1
2 |x0 − z| ≤ |z − y| ≤

3
2 |x0 − z|, so that

∥Iα(·)f2∥Lq(·)(Ω\B(x0,2t)) ≤ C

B(x0,t) |f (y)|dy

 |x0 − z|α(z)−n

Lq(·)(Ω\B(x0,2t)) .

From the log-condition for α(·) it follows that

c1|x0 − z|α(x0)−n
≤ |x0 − z|α(z)−n

≤ c2|x0 − z|α(x0)−n.

Therefore,

∥Iα(·)f2∥Lq(·)(Ω\B(x0,2t)) ≤ C

B(x0,t) |f (y)|dy

 |x0 − z|α(x0)−n

Lq(·)(Ω\B(x0,2t)) . (6.4)

The norm in the integral on the right-hand side is estimated by means of Lemma 3.4, which yields

∥Iα(·)f2∥Lq(·)(Ω\B(x0,2t)) ≤ Ct
−

n
p′(x0)


B(x0,t) |f (y)|dy.
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It remains to make use of (4.4) and obtain

∥Iα(·)f2∥Lq(·)(Ω\B(x0,2t)) ≤ Ct
−

n
p′(x0)

 t

0
s

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds. (6.5)

From (6.3) and (6.5) we arrive at (6.1). �

Theorem 6.2. Let Ω ⊂ Rn be an open bounded set, x0 ∈ Ω and p(·), α(·) ∈ WL(Ω) satisfy assumptions (3.1) and (3.3), q(x)
given by (6.2) and the functions ω1(r) and ω2(r) fulfill the condition

tα(x0)
 t

0
ω1(r)

dr
r

≤ C ω2(t), (6.6)

where C does not depend on t. Then the operators Mα(·) and Iα(·) are bounded from
{
M

p(·),ω1
{x0} (Ω) to

{
M

q(·),ω2
{x0} (Ω).

Proof. It suffices to prove the boundedness of the operator Iα(·), sinceMα(·)f (x) ≤ CIα(·)
|f |(x).

Let f ∈
{
M

p(·),ω
{x0} (Ω). We have

∥Iα(·)f ∥ {
M

{x0}

q(·),ω2
(Ω)

= sup
t>0

t
n

q′(x0)

ω2(t)
∥χΩ\B(x0,t)Iα(·)f ∥Lq(·)(Ω). (6.7)

We estimate ∥χΩ\B(x0,t)Iα(·)f ∥Lq(·)(Ω) in (6.7) by means of Theorem 6.1. This theorem is applicable since the integral (5.1)
with ω = ω1 converges by (4.8). We obtain

∥Iα(·)f ∥ {
M

{x0}

q(·),ω2
(Ω)

≤ C sup
t>0

t
−

n
p′(x0)

+
n

q′(x0)

ω2(t)

 t

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr

≤ C∥f ∥ {
M

{x0}

p(·),ω1
(Ω)

sup
t>0

tα(x0)

ω2(t)

 t

0

ω1(r)
r

dr.

It remains to make use of the condition (6.6). �

Corollary 6.3. Let Ω ⊂ Rn be an open bounded set and p(·), α(·) ∈ WL(Ω) satisfy assumptions (3.1) and (3.3), q(x) given

by (6.2), x0 ∈ Ω and λ
p′(x0)

≤
µ

q′(x0)
. Then the operators Mα(·) and Iα(·) are bounded from

{
L

p(·),λ
{x0} (Ω) to

{
L

q(·),µ
{x0} (Ω).

7. Singular integral operators in the spaces {
M

p(·),ω
{x0} (Ω)

Theorems 7.1 and 7.2 proved below, in the case of the constant exponent pwere proved in [29, Theorems 1.4.2 and 1.4.6]
(see also [30, p. 132,135]).

Theorem 7.1. Let Ω be an open bounded set, p ∈ WL(Ω) satisfy condition (3.1) and f ∈ Lp(·)(Ω \B(x0, t)) for every t ∈ (0, ℓ).
If the integral ℓ

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr

converges, then

∥Tf ∥Lp(·)(Ω\B(x0,t)) ≤ Ct
−

n
p′(x0)

 2t

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr,

where C does not depend on f , x0 and t ∈ (0, ℓ).

Proof. We split the function f in the form f1 + f2 as in (5.3) and have

∥Tf ∥Lp(·)(Ω\B(x0,2t)) ≤ ∥Tf1∥Lp(·)(Ω\B(x0,2t)) + ∥Tf2∥Lp(·)(Ω\B(x0,2t)).
Taking into account that f1 ∈ Lp(·)(Ω), by Theorem 3.3 we have

∥Tf1∥Lp(·)(Ω\B(x0,2t)) ≤ ∥Tf1∥Lp(·)(Ω) ≤ C∥f1∥Lp(·)(Ω) = C∥f ∥Lp(·)(Ω\B(x0,t)).
Then in view of (5.5)

∥Tf1∥Lp(·)(Ω\B(x0,t)) ≤ Ct
−

n
p′(x0)

 t

0
r

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr. (7.1)
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To estimate ∥Tf2∥Lp(·)(Ω\B(x0,2t)), note that 1
2 |x0 − z| ≤ |z − y| ≤

3
2 |x0 − z| for z ∈ Ω \B(x0, 2t) and y ∈B(x0, t), so that

∥Tf2∥Lp(·)(Ω\B(x0,2t)) ≤ C
B(x0,t) |z − y|−nf (y)dy


Lp(·)(Ω\B(x0,2t))

≤ C

B(x0,t) |f (y)|dy∥ |x0 − z|−n

∥Lp(·)(Ω\B(x0,2t)).
Therefore, with the aid of the estimate (3.4) and inequality (4.4), we get

∥Tf2∥Lp(·)(Ω\B(x0,2t)) ≤ Ct
−

n
p′(x0)

 t

0
s

n
p′(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,s))ds,

which together with (7.1) yields (7.1). �

Theorem 7.2. Let Ω ⊂ Rn be an open bounded set, x0 ∈ Ω, p ∈ WL(Ω) satisfy condition (3.1) and ω1(t) and ω2(t) fulfill

condition (5.8). Then the singular integral operator T is bounded from the space
{
M

p(·),ω1
{x0} (Ω) to the space

{
M

{x0}
p(·),ω2

(Ω).

Proof. Let f ∈
{
M

{x0}
p(·),ω1

(Ω). We follow the procedure already used in the proof of Theorems 5.2 and 6.2: in the norm

∥Tf ∥ {
M

p(·),ω2
{x0} (Ω)

= sup
t>0

t
n

p′(x0)

ω2(t)
∥TfχΩ\B(x0,t)∥Lp(·)(Ω), (7.2)

we estimate ∥TfχΩ\B(x0,t)∥Lp(·)(Ω) by means of Theorem 7.1 and obtain

∥Tf ∥ {
M

p(·),ω2
{x0} (Ω)

≤ C sup
t>0

1
ω2(t)

 t

0
r

n
p(x0)

−1
∥f ∥Lp(·)(Ω\B(x0,r))dr

≤ C∥f ∥ {
M

{x0}

p(·),ω1
(Ω)

sup
t>0

1
ω2(t)

 t

0
ω1(r)

dr
r

≤ C∥f ∥ {
M

{x0}

p(·),ω1
(Ω)

. �

Corollary 7.3. Let Ω ⊂ Rn be an open bounded set, p ∈ WL(Ω) satisfy the assumption (3.1), x0 ∈ Ω and 0 ≤ λ < n, λ ≤ µ ≤

n. Then the singular integral operator T is bounded from
{
L

p(·),λ
{x0} (Ω) to

{
L

p(·),µ
{x0} (Ω).

Acknowledgments

The research of V. Guliyev and J. Hasanovwas partially supported by the grant of Science Development Foundation under
the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1. The research of V. Guliyev and S. Samko was
partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No: 110T695).

References

[1] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, NJ, 1983.
[2] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938) 126–166.
[3] A. Kufner, O. John, S. Fuçik, Function Spaces, Noordhoff International Publishing, Leyden, 1977, Publishing House Czechoslovak Academy of Sciences:

Prague.
[4] L. Diening, P. Hasto, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in: Function Spaces, Differential Operators and

Nonlinear Analysis, Proceedings of the Conference Held in Milovy, Bohemian–Moravian Uplands, May 28–June 2, 2004, Math. Inst. Acad. Sci. Czech
Republic, Praha, 2005, pp. 38–58.

[5] V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces, in: Function Spaces, Differential Operators and
Nonlinear Analysis, Proceedings of the Conference Held in Milovy, Bohemian–Moravian Uplands, May 28–June 2, 2004, Math. Inst. Acad. Sci. Czech
Republic, Praha, 2005, pp. 152–175.

[6] V. Kokilashvili, S. Samko, Weighted boundedness of the maximal, singular and potential operators in variable exponent spaces, in: A.A. Kilbas,
S.V. Rogosin (Eds.), Analytic Methods of Analysis and Differential Equations, Cambridge Scientific Publishers, 2008, pp. 139–164.

[7] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct.
16 (5–6) (2005) 461–482.

[8] L. Diening, P. Harjulehto, Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, in: Lecture Notes in Mathematics, vol. 2017,
Springer-Verlag, Berlin, 2011.

[9] A. Almeida, J.J. Hasanov, S.G. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2) (2008) 1–15.
[10] Y. Mizuta, T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008)

583–602.
[11] V. Kokilashvili, A. Meskhi, Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Arm. J. Math. 1 (1) (2008) 18–28

(electronic).
[12] P. Hästö, Local-to-global results in variable exponent spaces, Math. Res. Lett. 15 (2008).
[13] D.R. Adams, A note on Riesz potentials, Duke Math. 42 (1975) 765–778.
[14] J. Peetre, On the theory of Lp,λ spaces, J. Funct. Anal. 4 (1969) 71–87.



84 V.S. Guliyev et al. / J. Math. Anal. Appl. 401 (2013) 72–84

[15] F. Chiarenza, M. Frasca, Morrey spaces and Hardy–Littlewood maximal function, Rend. Math. 7 (1987) 273–279.
[16] V.I. Burenkov, V.S. Guliyev, Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces, Potential Anal.

31 (2) (2009) 1–39.
[17] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces,

Dokl. Math. 75 (1) (2007) 103–107; Translated from Dokl. Akad. Nauk Ross. Akad. Nauk 412 (5) (2007) 585–589.
[18] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-

type spaces, J. Comput. Appl. Math. 208 (1) (2007) 280–301.
[19] V.I. Burenkov, V.S. Guliyev, A. Serbetci, T.V. Tararykova, Necessary and sufficient conditions for the boundedness of genuine singular integral operators

in local Morrey-type spaces, Dokl. Akad. Nauk Ross. Akad. Nauk 422 (1) (2008) 11–14.
[20] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey

spaces, Math. Scand. 107 (2010) 285–304.
[21] Eridani, H. Gunawan, E. Nakai, Integral operators of potential type in spaces of homogeneous type, Sci. Math. Jpn. 60 (2004) 539–550.
[22] Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282 (2) (2009) 219–231.
[23] K. Kurata, S. Nishigaki, S. Sugano, Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators, Proc.

Amer. Math. Soc. 128 (4) (1999) 1125–1134.
[24] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, in: S. Igari (Ed.), Harmonic Analysis, in: ICM 90 Satellite

Proceedings, Springer-Verlag, Tokyo, 1991, pp. 183–189.
[25] E. Nakai, Hardy–Littlewoodmaximal operator, singular integral operators and Riesz potentials on generalizedMorrey spaces, Math. Nachr. 166 (1994)

95–103.
[26] E. Nakai, The Campanato, Morrey and Holder spaces on spaces of homogeneous type, Studia Math. 176 (2006) 1–19.
[27] V.S. Guliyev, J.J. Hasanov, S.G. Samko, Boundedness of the maximal, potential and singular integral operators in the generalized variable exponent

Morrey type spaces, J. Math. Sci. 170 (4) (2010) 423–443.
[28] V.I. Burenkov, H.V. Guliyev, Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces, Studia

Math. 163 (2) (2004) 157–176.
[29] V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in Rn , Doctor’s Degree Dissertation, Moscow, Mat.

Inst. Steklov, 1994, pp. 1–329 (in Russian).
[30] V.S. Guliyev, Function Spaces, Integral Operators and TwoWeighted Inequalities on Homogeneous Groups. Some Applications, Baku, 1999, pp. 1–332

(in Russian).
[31] V.S. Guliyev, R.Ch. Mustafayev, Integral operators of potential type in spaces of homogeneous type, Dokl. Akad. Nauk Ross. Akad. Nauk 354 (6) (1997)

730–732 (in Russian).
[32] V.S. Guliyev, R.Ch. Mustafayev, Fractional integrals in spaces of functions defined on spaces of homogeneous type, Anal. Math. 24 (3) (1998) 181–200

(in Russian).
[33] J. Duoandikoetxea, Fourier Analysis, in: Graduate Studies, vol. 29, Amer. Math. Soc., 2001.
[34] L. Diening, Maximal functions on generalized Lebesgue spaces Lp(x) , Math. Inequal. Appl. 7 (2) (2004) 245–253.
[35] S. Samko, Convolution and potential type opera in the space Lp(x) , Integral Transforms Spec. Funct. 7 (3–4) (1998) 261–284.
[36] L. Diening, M. Rüźićka, Calderon–Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics, J. Reine Angew.

Math. 563 (2003) 197–220.
[37] V.I. Burenkov, H.V. Guliyev, V.S. Guliyev, On boundedness of the fractionalmaximal operator from complementaryMorrey-type spaces toMorrey-type

spaces, in: The Interaction of Analysis and Geometry, in: Contemp. Math., vol. 424, Amer. Math. Soc., Providence, RI, 2007, pp. 17–32.


	Maximal, potential and singular operators in the local ``complementary'' variable exponent Morrey type spaces
	Introduction
	Relations of the ``complementary'' Morrey spaces  L{ x0}p, λ (Ω)  with weighted Lebesgue spaces; the case of constant  p 
	Preliminaries on variable exponent Lebesgue and Morrey spaces
	Variable exponent local ``complementary'' generalized Morrey spaces
	The maximal operator in the spaces  M{ x0}p( · ), ω (Ω) 
	Riesz potential operator in the spaces  M{ x0}p( · ), ω (Ω) 
	Singular integral operators in the spaces  M{ x0}p( · ), ω (Ω) 
	Acknowledgments
	References


