35 research outputs found
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol
Stilbenes are naturally occurring phytoalexins that generally exist as their more stable E isomers. The most well known natural stilbene is resveratrol (Res), firstly isolated in 1939 from roots of Veratrum grandiflorum (white hellebore) (1) and since then found in various edible plants, notably in Vitis vinifera L. (Vitaceae) (2). The therapeutic potential of Res covers a wide range of diseases, and multiple beneficial effects on human health such as antioxidant, anti-inflammatory and anti-cancer activities have been suggested based on several in vitro and animal studies (3). In particular, Res has been reported to be an inhibitor of carcinogenesis at multiple stages via its ability to inhibit cyclooxygenase, and is an anticancer agent with a role in antiangiogenesis (4). Moreover, both in vitro and in vivo studies showed that Res induces cell cycle arrest and apoptosis in tumor cells (4). However, clinical studies in humans evidenced that Res is rapidly absorbed after oral intake, and that the low level observed in the blood stream is caused by a fast conversion into metabolites that are readily excreted from the body (5). Thus, considerable efforts have gone in the design and synthesis of Res analogues with enhanced metabolic stability. Considering that reduced Res (dihydro- resveratrol, D-Res) conjugates may account for as much as 50% of an oral Res dose (5), and that D-Res has a strong proliferative effect on hormone-sensitive cancer cell lines such as breast cancer cell line MCF7 (6), we recently devoted our synthetic efforts to the preparation of trans-restricted analogues of Res in which the E carbon-carbon double bond is embedded into an imidazole nucleus. To keep the trans geometry, the two aryl rings were linked to the heteroaromatic core in a 1,3 fashion. Based on this design, we successfully prepared a variety of 1,4-, 2,4- and 2,5-diaryl substituted imidazoles including Res analogues 1, 2 and 3, respectively, by procedures that involve transition metal-catalyzed Suzuki-Miyaura cross-coupling reactions and highly selective N-H or C-H direct arylation reactions as key synthetic steps.
The anticancer activity of compounds 1–3 was evaluated against the 60 human cancer cell lines panel of the National Cancer Institute (NCI, USA). The obtained results, that will be showed and discussed along with the protocols developed for the preparation of imidazoles 1–3, confirmed that a structural optimization of Res may provide analogues with improved potency in inhibiting the growth of human cancer cell lines in vitro when compared to their natural lead.
(1) Takaoka,M.J.Chem.Soc.Jpn.1939,60,1090-1100.
(2) Langcake, P.; Pryce, R. J. Physiological. Plant Patology 1976, 9, 77-86.
(3) Vang, O.; et al. PLoS ONE 2011, 6, e19881. doi:10.1371/journal.pone.0019881
(4) Kraft, T. E.; et al. Critical Reviews in Food Science and Nutrition 2009, 49, 782-799.
(5) Walle, T. Ann. N.Y. Acad. Sci. 2011, 1215, 9-15. doi: 10.1111/j.1749-6632.2010.05842.x
(6) Gakh,A.A.;etal.Bioorg.Med.Chem.Lett.2010,20,6149-6151
Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error
Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP x education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P <8.5 x 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.Peer reviewe