6 research outputs found

    2010 Status of the Lake Ontario Lower Trophic Levels

    Get PDF
    This report presents data on the status of lower trophic level components of the Lake Ontario ecosystem (zooplankton, phytoplankton, nutrients) in 2010 and compares the 2010 data with available time series. Lower trophic levels are indicators of ecosystem health [as identified by the Lake Ontario Pelagic Community Health Indicator Committee (EPA 1993) and presented in the biennial State of the Lake Ecosystem Conference (SOLEC) reports] and determine the lake’s ability to support the prey fish upon which both wild and stocked salmonids depend. Understanding the production potential of lower trophic levels is also integral to ecosystem-based management. Continued evaluation of lower trophic levels is particularly important for fisheries management, as the observed declines in alewife and Chinook salmon in Lake Huron in 2003 may have been partly the result of changes in lower trophic levels (Barbiero et al. 2009)

    Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes

    Get PDF
    We describe, explain, and “predict” dispersal and ecosystem impacts of six Ponto-Caspian endemic species that recently invaded the Great Lakes via ballast water. The zebra mussel, Dreissena polymorpha, and quagga mussel, Dreissena bugensis, continue to colonize hard and soft substrates of the Great Lakes and are changing ecosystem function through mechanisms of ecosystem engineering (increased water clarity and reef building), fouling native mussels, high particle filtration rate with selective rejection of colonial cyanobacteria in pseudofeces, alteration of nutrient ratios, and facilitation of the rapid spread of their Ponto-Caspian associates, the benthic amphipod Echinogammarus ischnus and the round goby, Neogobius melanostomus, which feeds on zebra mussels. The tubenose goby, Proterorhinus marmoratus, which does not feed on zebra mussels, has not spread rapidly. Impacts of these benthic invaders vary with site: in some shallow areas, habitat changes and the Dreissena → round goby → piscivore food chain have improved conditions for certain native game fishes and waterfowl; in offshore waters, Dreissena is competing for settling algae with the native amphipod Diporeia spp., which are disappearing to the detriment of the native deep-water fish community. The predatory cladoceran Cercopagis pengoi may compete with small fishes for zooplankton and increase food-chain length

    A perspective on needed research, modeling, and management approaches that can enhance Great Lakes fisheries management under changing ecosystem conditions

    No full text

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Abstract Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km² (158 cm²) to 100 km² (1,000,000,000,000 cm²). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format: .csv and .SQL
    corecore