621 research outputs found

    Rainfall-induced differential settlements of foundations on heterogeneous unsaturated soils

    Get PDF
    This study stochastically investigates the rainfall-induced differential settlement of a centrally loaded, rigid strip foundation on an unsaturated soil with spatially varying values of either preconsolidation stress or porosity. The differential settlement (between the two foundation ends) is calculated at various times during rainfall by way of a coupled, hydro-mechanical, finite-element analysis. The Barcelona basic model describes the mechanical behaviour of the soil, and the van Genuchten relationships describe water retention and permeability. The variability of soil properties is modelled by means of random fields with spatial correlation in the framework of a Monte Carlo simulation. The study demonstrates that the occurrence of rainfall-induced differential settlements can be consistently analysed using concepts of unsaturated soil mechanics and random field theory. Results show that differential settlements can be vastly underpredicted (or even completely missed) if random heterogeneity and partial saturation are not simultaneously considered. The variation of differential settlements and their statistics during the rainfall depend on the magnitude of the applied load and the statistics of soil variability. Moreover, the transient phase of infiltration and a spatial correlation length equal to the width of the foundation pose the highest risk of differential settlement

    The accuracy of some models for the airflow resistivity of nonwoven materials

    Get PDF
    The airflow resistivity is a key parameter to consider when evaluating the acoustic performance of a fibrous material. The airflow resistivity is directly linked to a fibrous materials acoustic properties which allows for the non-invasive measurements of the fibre diameter and material density from acoustical data. There are several models that relate the airflow resistivity to the acoustic behaviour through the material's density and fibre diameter. It is not always obvious how accurately a model represents the true value of the flow resistivity of a nonwoven material with a fibre size variation. Therefore, the scope of this paper is to compare the performance of several theoretical and empirical models applied to a representative range of nonwoven fibrous media composed of blends of different fibre sizes and types. Being able to understand the performance of these models in application to fibre blends will enable users to characterise these types of fibrous media more precisely. From this work, it was concluded that the Miki model (Miki, 1990) is the most accurate model to invert the airflow resistivity from acoustical surface impedance of a wide range of nonwoven blends

    Permeability of a bubble assembly: From the very dry to the wet limit

    Get PDF
    We measure the permeability of a fluidized bed of monodispersed bubbles with soap solution characteristic of mobile and non-mobile interfaces. These experimental data extend the permeability curves previously published for foam in the dry limit. In the wet limit, these data join the permeability curves of a hard sphere suspension at porosity equal to 0.4 and 0.6 in the cases of mobile and non-mobile interfaces respectively. We show that the model of permeability proposed by Kozeny and Carman and originally validated for packed beds of spheres (with porosity around 0.4) can be successfully applied with no adjustable parameters to liquid fractions from 0.001 up to 0.85 for systems made of monodisperse and deformable entities with non-mobile interfaces

    Wicking and evaporation of liquids in porous wicks: a simple analytical approach to optimization of wick design

    Get PDF
    Wicking and evaporation of volatile liquids in porous, cylindrical wicks is investigated where the goal is to model, using simple analytical expressions, the effects of variation in geometrical parameters of a wick, such as porosity, height and bead-size, on the wicking and evaporation processes, and find optimum design conditions. An analytical sharp-front flow model involving the single-phase Darcy’s law is combined with analytical expressions for the capillary suction pressure and wick permeability to yield a novel analytical approach for optimizing wick parameters. First, the optimum beadradius and porosity maximizing the wicking flow-rate are estimated. Later, after combining the wicking model with evaporation from the wick-top, the allowable ranges of bead-radius, height and porosity for ensuring full saturation of the wick are calculated. The analytical results are demonstrated using some highly volatile alkanes in a polycarbonate sintered wick

    Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media

    Get PDF
    We present a strong relationship between the microstructural characteristics of, and the fluid velocity fields confined to, three-dimensional random porous materials. The relationship is revealed through simultaneously extracting correlation functions R-uu (r) of the spatial (Eulerian) velocity fields and microstructural two-point correlation functions S-2(r) of the random porous heterogeneous materials. This demonstrates that the effective physical transport properties depend on the characteristics of complex pore structure owing to the relationship between R-uu (r) and S-2(r) revealed in this study. Further, the mean excess plot was used to investigate the right tail of the streamwise velocity component that was found to obey light-tail distributions. Based on the mean excess plot, a generalized Pareto distribution can be used to approximate the positive streamwise velocity distribution

    Experimental theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)

    Full text link
    Wall-flow particulate filters have been placed as a standard technology for Diesel engines because of the increasing restrictions to soot emissions. The inclusion of this system within the exhaust line requires the development of computational tools to properly simulate its flow dynamics and acoustics behaviour. These aspects become the key to understand the influence on engine performance and driveability as a function of the filter placement. Since the pressure drop and the filtration process are strongly depending on the pore structure properties - permeability, porosity and pore size - a reliable definition of these characteristics is essential for model development. In this work a methodology is proposed to determine such properties based on the combination of the pressure drop rement in a steady flow test rig and two theoretical approaches. The later are a lumped model and a one-dimensional (1D) unsteady compressible flow model. The purpose is to simplify the integration of particulate filters into the global engine modelling and development processes avoiding the need to resort to specific and expensive characterisation tests. The proposed methodology was validated against measurements of the response of an uncoated diesel particulate filter (DPF) under different flow conditions as cold steady flow, impulsive flow and hot pulsating flow. © 2011 Elsevier Ltd.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovacion through grant number DPI2010-20891-C02-02.Payri González, F.; Broatch Jacobi, JA.; Serrano Cruz, JR.; Piqueras Cabrera, P. (2011). Experimental theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs). Energy. 36(12):6731-6744. https://doi.org/10.1016/j.energy.2011.10.033S67316744361
    • …
    corecore