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We present a strong relationship between the microstructural characteristics of, and the fluid velocity fields

confined to, three-dimensional random porous materials. The relationship is revealed through simultaneously

extracting correlation functions Ruu(r) of the spatial (Eulerian) velocity fields and microstructural two-point

correlation functions S2(r) of the random porous heterogeneous materials. This demonstrates that the effective

physical transport properties depend on the characteristics of complex pore structure owing to the relationship

between Ruu(r) and S2(r) revealed in this study. Further, the mean excess plot was used to investigate the

right tail of the streamwise velocity component that was found to obey light-tail distributions. Based on the

mean excess plot, a generalized Pareto distribution can be used to approximate the positive streamwise velocity

distribution.

DOI: 10.1103/PhysRevE.93.013122

I. INTRODUCTION

The physics of fluids flowing through random porous media

is of fundamental importance to a wide range of engineering

and scientific fields [1,2]. Such diverse fields as enhanced oil

recovery (EOR), carbon capture and storage (CCS), contami-

nant migration in ground-water, and permeation of nutrients in

biological tissues require an understanding of, and calculation

of, effective physical transport properties resulting from such

flow phenomena. As a consequence, the relationships between

the effective physical transport properties and the intrinsic

complicated pore structure of porous materials have always

attracted a considerable amount of attention [2,3]. In the

pioneering experimental work of Darcy [4] (known as Darcy’s

law), the permeability κ was determined by the following

relationship:

q = −
κ

μ

�p

l
, (1)

where q is the flow rate (with the same unit as velocity,

ms−1), μ the viscosity of the fluid flowing through the porous

medium, with the pressure difference �p, along the flow

distance of l. Obviously, the dependence of permeability on

the pore geometry is not accounted for explicitly in Darcy’s

law. The pore geometry usually consists of an interconnected

three-dimensional network of capillary channels of a wide

range of sizes and shapes. To address this, a frequently
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used empirical relationship was proposed by Kozeny [5] and

Carman [6,7] with the following general form:

κ = φ
r2
h

k
, (2)

where φ denotes the porosity, rh the hydraulic radius, and k the

Kozeny constant associated with the inherent pore geometry.

Descriptors of pore geometry typically include a characteristic

length scale or correlation functions [8]. There exists a vast

amount of work that has attempted to relate the effective

physical transport properties, e.g., permeability κ and diffusion

trapping constant γ , to the pore geometry using fractals [9],

characteristic length scales [10,11], or correlation functions

[12–19].

For a single-phase viscous flow, or a single-phase flow with

passive scalar tracers [20–22], the effective physical transport

properties are determined by the underlying flow field, as they

are coupled with the momentum transport equation. However,

the underlying flow field is usually determined by the flow

conditions. In fluids flowing through porous media in the Darcy

regime, the flow field confined to the porous materials are

strongly influenced by the complex pore features. This has led

to a vast amount of experimental work focusing on measuring

the flow field through complex porous media [20,23–27].

Among the previous work, Datta et al. [27] observed that

the streamwise velocity component across several packings of

beads obeys an exponential distribution. Further, they probed

correlation functions of the velocity field. However, they did

not characterize the pore space together with the corresponding

velocity field.

In this paper, we studied, simultaneously, the correlation

function of the flow field and the two-point correlation of

the complex pore space. We adopted the mean excess plot

(MEP) technique proposed by Ghosh and Resnick [28] and

generalized Pareto distributions (GPD) to investigate the

right tail of the streamwise velocity component. We used

the lattice Boltzmann method (LBM) [29,30] to simulate

the viscous pore-scale flows through three different random

porous samples.
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II. PORE-SCALE FLOW SIMULATIONS

AND POROUS SAMPLES

A. Pore-scale flow simulations

Pore-scale fluid motion within the complex pores of the

porous materials is governed by the continuity and Navier-

Stokes equations,

∇ · u = 0, (3)

ρ

[
∂u

∂t
+ u · ∇u

]

= −∇p + μ∇2u, (4)

where ρ denotes the fluid density, u = (ux,uy,uz) the pore

velocity vector, p the pressure, and μ the dynamic viscosity.

We employed the lattice Boltzmann BGK model [31] to

simulate the viscous flow within the complex pore spaces. The

lattice Boltzmann BGK model is based on the discrete velocity

Boltzmann equation

fi(x + eiδt,t + δt) − fi(x,t)
︸ ︷︷ ︸

Streaming

= −
1

τ

[

fi(x,t) − f
eq

i (x,t)
]

︸ ︷︷ ︸

Collision

,

(5)

where x denotes the centroid of the cell, τ denotes the

relaxation time, fi denotes the particle distribution function,

which streams along the lattice velocity vector ei ; the right-

hand side of Eq: (5) represents the rate of change of fi resulting

from collision between the incoming fi and the equilibrium

particle distribution function f
eq

i . δt is assumed to be unity.

We used the three-dimensional d3q19 model, so the velocity

vector ei has 19 components. The macroscopic local density

ρ and velocity functions u are evaluated through the moments

of the particle distribution functions with respect to ei :

ρ =
∑

i=0

fi, (6)

ρu =
∑

i=0

fiei . (7)

The relaxation time τ was chosen to be unity to reduce the

viscosity dependence [32] for all the simulations carried out in

this study. The pore-scale flow has a Reynolds number Re ≪ 1,

and was produced by applying a constant small pressure

gradient along the flow direction x. The no-slip boundary

condition was applied at the pore-grain interfaces through

the bounce-back technique, and periodic boundary conditions

were applied on the y and z directions.

B. Porous samples

Figure 1 shows computer reconstructions of the three

porous materials, chosen to reflect with a wide variation

in porosity and pore structures. The corresponding porosity

profile for each individual porous sample shown in Fig. 1(d)

shows that porosity φ fluctuates around the averaged porosity

over the flow direction x (within ±0.05 of the average porosity

φ.). Due to different resolutions and length scales associated

with the three samples, we present the images and results in

pixel or voxel units (it is quite straightforward to convert them

to physical units by multiplying the corresponding resolution).

The three porous materials have a cubic lattice of 2563, 5123,

and 5123, respectively.

The first sample is a realistic random composite porous

foam; the second one was built from a simulation of the

sedimentation process of bidisperse spherical particles using

discrete element modeling (DEM) (see Ref. [33] for details);

the third one is a Bentheimer sandstone. The first and third

samples were digitized as a parallel stack of two-dimensional

images of cross-sections from noninvasive x-ray computed

tomography (XCT) measurements; the second sample was

digitized through image processing the deposited spherical

particles in terms of the centroid and diameter of individual

particles. Then the images were segmented into binary images,

each pixel of which represents either pore or grain phase. The

binary images provide a perfect base for lattice Boltzmann

simulation in terms of image-based pore-scale modeling [34].

III. RESULTS AND DISCUSSION

A. Determination of the representative

elementary volume (REV)

While microscopically inhomogeneous, the porous samples

shown in Fig. 1 exhibit some small regions of prevailing ho-

mogeneity. Hence, different regions may exhibit significantly

different properties. Therefore, it is crucial to determine that

the size of the porous samples under study exceeds the size of

the representative element volume with a view to determine

the effective transport properties. Using length scales of the

representative element volume, which is significantly larger

than the inhomogeneities, we can characterize the effective

transport properties, e.g., the bulk permeability κ (not shown

in this study).

Prior work [35,36] has documented different statistical

approaches to determine the existence and size of the represen-

tative element volume. In this study, a two-point correlation

function of the complex pore space was used to characterize

the representative element volume.

The three-dimensional random porous materials considered

in this study contain two disjointed phases, i.e., pore and grain

phases, as shown in Figs. 1(a)–1(c), which can be described

through random set models defined in the three-dimensional

Euclidean space R
3. For a binary cross-section image, R

3

is reduced to the two-dimensional Euclidean space R
2. The

structure of each random porous medium can be regarded as

a realization of a time-independent spatial stochastic process

or field (
,F ,P) that can be statistically characterized by the

indicator function I i(η) [37] for the phase i ∈ {pore,grain}:

I i(η) =

{

1 η ∈ V i,

0 otherwise,
(8)

where I i(η) indicates that any point η within the random

porous materials takes only values 0 or 1 (a Boolean model)

depending upon whether the point η belongs to the phase of

interest V i or not. To simplify the notation, we will generally

omit the superscript i in I i . To completely characterize the

microstructural features of the two-phase porous materials re-

quires knowledge of the canonical n-point correlation function

Hn [37,38]. However, Hn is computationally intractable in

most cases. In this study, we adopted the two-point correlation

013122-2
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FIG. 1. 3D binary visualization of random porous samples (a) Porous foam 2563, (b) Sphere packing generated from DEM 5123, (c)

Bentheimer sandstone 5123, and (d) plot of porosity as a function of the flow direction x in pixel units. Green indicates pore phase; black, grain

phase.

function S2(η,η + r) for either of the two phases [39–41],

which can be defined as

S2(η,η + r) = 〈I(η)I(η + r)〉, (9)

where 〈· · ·〉 denotes an ensemble (volume) average over

all positions η within the porous material. For an isotropic

material, S2(η,η + r) is reduced to S2(r). It is possible to

interpret S2(r) as the probability of finding two points with a

separation distance ||r|| in the same phase (either pore or grain

phase). When the separation distance ||r|| = 0 in Eq. (9), S2

is reduced to

lim
||r||→0

S2(r) = φ, (10)

which denotes the one-point statistic concerning the porous

material, i.e., the porosity φ; when at the opposite extreme

||r|| → ∞ in Eq. (9), S2 is reduced to

lim
||r||→∞

S2(r) = φ2. (11)

Debye et al. [8] showed that the derivative of S2 at the

separation distance zero is equal to −s/4 for three-dimensional

isotropic porous media, where s is the specific surface area

(interface area per unit volume). For the first three space

dimensions, there is a proportionality relation between the

the derivative of S2 and the specific surface area as follows:

S ′
2(0) =

⎧

⎨

⎩

−s/2, d = 1,

−s/π, d = 2,

−s/4, d = 3.

(12)

A characteristic pore size rc can be defined based the method

proposed by Ref. [14], which is a separation distance where

a straight line with the slope equaling S ′
2(0) intersects the

horizontal line φ2 and reads

rc =
φ(φ − 1)

S ′
2(0)

. (13)

We first calculated the one-dimensional S2 of the pore space

of all the line sections along the three orthogonal x, y, and

z directions for the three porous materials (S2 − x,S2 − y,

and S2 − z in R
1). The results for S2 − x,S2 − y, and S2 − z

of the pore space were then averaged across all the lines in

the x, y, and z direction and are shown in Fig. 2. It can

be observed that S2 attains the value of φ at the separation

distance r = 0 and decays rapidly to the asymptotic theoretical

value of φ2 in the x, y, and z directions for all three porous
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FIG. 2. Binary representation of cross-section of (a) porous foam, (c) sphere packing via DEM, (e) Bentheimer sandstone (green for pore,

white for grain); Volume averaged S2 of pore space along orthogonal x, y, and z directions for (b) porous foam, (d) sphere packing via DEM,

(f) Bentheimer sandstone; separation distance r in pixel units.

materials as expected [42]. The shape of S2 provides an

indication of general morphology of the three porous samples.

First, S2 − x,S2 − y, and S2 − z fall with almost the same

rate within a small separation distance, which indicates that

rc will be around the same based on S ′
2(0) in x, y, and z

direction, respectively. This suggests that the microstructural

pores of the three significantly different porous samples are

statistically isotropic. Second, S2 curve of the sphere packing

via DEM shows a distinct minimum that is a feature of

impenetrable sphere packing. This distinct minimum of S2(r)

arises from the excluded-volume effects, which results from

the mutual impenetrability of finite-size (hard-core) particles.

The separation distance where S2(r) attains the minimum

corresponds roughly with the mean particle size [43]. However,
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FIG. 3. Three-dimensional radial averaged S2 of the pore space for (a) porous foam, (b) sphere packing via DEM, and (c) Bentheimer

sandstone.

S2 curves of porous foam and Bentheimer sandstone fall

monotonically to the asymptotic value φ2, which is a feature

of fully penetrable sphere packing.

We also obtained the three-dimensional radial averaged S2

of the pore space for the three samples as shown in Fig. 3. The

S2 curves are marked with two characteristic length scales as-

sociated with the porous samples. One is the characteristic pore

size rc, another is the mean grain size rm. The porous foam and

Bentheimer sandstone can be assumed to be made of polydis-

persed spheres that interpenetrate mutually to varying degrees.

The physical significance of the separation distance where

S2(r) first reaches a local minimum for totally impenetrable

particles is that it equals roughly the mean grain size rm as men-

tioned above. This leads to the definition of an effective mean

grain size rm of the porous foam and Bentheimer sandstone.

There are a few features that can be observed from Fig. 3.

First, rc is significantly smaller than rm for all three samples

(four, three, and seven times smaller, respectively). Further,

S2 within the separation distance rc is significantly greater

than φ2. It is worth pointing out that S2 is related to the

auto-covariance function for the pore phase through the

following relationship:

χ (r) = 〈[I(η) − φ][I(η + r) − φ]〉 = S2(r) − φ2. (14)

Therefore, points within pore phase separated by a distance

that is smaller than rc are positively correlated as S2 is of

having values falling within the interval of (φ2,φ] (in light

of χ (r) ∈ (0,φ − φ2]). On the other hand, points within pore

phase separated by a distance that is much larger than rm are

uncorrelated asS2 is of having values very close to φ2. Second,

as shown in Fig. 3, the size of the three porous materials is

significantly greater than rc (given that the plot length is the half

of the system size due to periodic boundary conditions). This

ensures sufficiently good statistics for the transport properties

as the volume of each sample can be regarded as a representa-

tive elementary volume [44]. The estimates for s, rc, and rm are

shown in the Table I. The porosity of the porous foam is of the

highest of the three samples; however, this does not necessarily

mean it attains the largest rc as rc depends on both S ′
2(0) and φ.

B. Correlation functions of the pore spaces and velocity fields

We obtained the flow fields confined to the complex pore

spaces of the three samples via LB simulations with no-slip

boundary conditions at the pore-grain interface. The flow was

driven by a constant pressure gradient along the streamwise x

direction. Figure 4 shows representative fluid particles flowing

through the heterogeneous pore spaces. It can be observed that

the trajectories of fluid particles are tortuous and preferential.

The velocity magnitude also exhibits significant variations that

arise due to the confined and heterogeneous pore space.

Figure 5 shows streamwise velocity contours, S2 of the

pore space along with the corresponding Eulerian correlation

functions of the velocity field for the three porous materials.

The velocity contours shown in Figs. 5(a), 5(c), and 5(e) are

based on the binary representation of the cross-section shown

in Figs. 5(b), 5(d), and 5(f). S2 shown in Figs. 5(a), 5(c),

and 5(e) were calculated for the corresponding pore phase

in R
2. The Eulerian correlation function of the interstitial

streamwise velocity field can be calculated in terms of the

following expression:

Ruu(η,η + r) =
〈[(u(η) − u)(u(η + r) − u)]〉

σ 2
u

, (15)

where u and σ 2
u denote the mean value and variance of the

interstitial streamwise velocity for the whole cross-section,

respectively. Comparing the velocity contours to the original

binary representation of the corresponding cross-sections, we

can observe that there are no isolated pores (pore surrounded

by the grain phase completely), as all the pores are filled with

fluids. The velocities within each individual pore for all three

porous materials show significant variations across the plane,

even for the Bentheimer sandstone with the lowest porosity.

Very sporadic, or localized high velocity, is observed in a few

random pores, which looks similar to “burst” of turbulence

or may relate to the pore-scale intermittent velocity structure

[45,46]. These high fluid velocity regions stretch across several

pore length scales and look very similar to the large-scale

spatially correlated “coherent structure” of turbulence [47],

though the flow under study is a laminar one overall and

TABLE I. Estimates for s, rc, and rm.

Samples s[pixel]−1 rc[pixel] rm[pixel]

Porous foam 0.00352 7.87 35.1

Sphere packing 0.00525 11.1 38.2

Bentheimer sandstone 0.00436 8.77 66.2
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FIG. 4. Representative fluid particles through the pore space for (a) porous foam, (b) sphere packing via DEM, and (c) Bentheimer

sandstone, visualized in terms of normalized velocity magnitude.

for individual pore spaces. Moreover, negative velocities are

observed in flows through the three porous materials (indicated

in the inset images), which arises due to recirculating resulting

from centrifugal action as fluid particles try to navigate through

the tortuous pore space with a wide range of sizes and shapes

(second flow resulting from centrifugal action). The percentage

of fluid voxels with negative interstitial streamwise velocity

was also quantified and shown in the Table II. The Bentheimer

sandstone has the highest percentage of negative streamwise

velocity, which arises due to the most complex underlying

pore space. Negative streamwise velocities have also been

reported for flows through porous media in Refs. [27,48,49].

The stagnation zones within the second flow region may be

related to non-Fickian transport [21] or the phenomena of

hold-up dispersion [20,50].

Further, we computed Ruu(r) based on Eq. (15) to charac-

terize the spatial (Eulerian) correlation of the velocity fields

within the three porous materials as shown in Fig. 5. Unlike

Datta et al. [27], who studied correlation functions of the

velocity field along the flow direction and the Lagrangian

correlation functions of velocities investigated by Le Borgne

et al., the velocity field used for computing Ruu(r) lies in

a cross-section perpendicular to the flow direction. This is

more appropriate for investigating the relationship between

the velocity field confined to pore space and the pore space

itself, as it may reduce the spurious correlation resulting from

the same fluid stream line in Ruu(r). As discussed before, S2

is an important quantitative measure of spatial correlation of

the pore space, and its properties are crucial to understand

the complex pore geometry. Now with the help of Ruu(r),

which relates a characteristic length scale of velocity to the

random flow field, we try to relate the characteristic length

scale of the flow field to the inherent length scale of the

TABLE II. Percentage of negative streamwise velocity.

Samples Percentage

Porous foam 1.25%

Sphere packing 11.2%

Bentheimer sandstone 12.8%

pore space itself embedded in S2. S2 for the cross-sections

shown in Figs. 5(a), 5(c), and 5(e) exhibit rather different

characteristics. For example, for the pore space within the

sphere packing resulting from DEM, S2 exhibits quite obvious

oscillations (distinct minimum) with a very similar periodicity,

since the distinct peaks of the S2 and Ruu(r) appear nearly

at the identical positions. This indicates spatial correlations

between the pore space resulting from the excluded-volume

effects of the nonoverlapping spheres [37]. In the case of

the porous foam, S2 exhibits relatively weaker oscillations,

which indicates that part of the spherical pores mix with others.

However, in the case of Bentheimer sandstone,S2 decays to the

asymptotic theoretical value φ2 with very small fluctuations,

which indicates that the length scale of random pores are quite

short ranged. However, irregular and heterogeneous clusters

can be observed in both the pore and grain phase for the

Bentheimer sandstone. Finally, R(r) is greater than zero for

all three samples, which indicates that the Eulerian velocity

field is always positively correlated.

Comparing Ruu(r) with S2 for each individual case, we

can observe that the Eulerian correlation functions Ruu(r)

and S2 for the three samples are all short ranged and decay

exponentially. Further, it can be observed that the distinct

oscillations of Ruu(r) follow a similar pattern to those of S2,

in particular for the case of sphere packing. This interesting

feature we want to emphasize indicates that the spatially

randomly varying flow field confined to the pore space is

remarkably related to the spatial correlation of the pore space.

It is consistent with the report by Lester et al. [51], that chaotic

flow dynamics within porous media, even under steady-flow

conditions, result from the intrinsic topological complexity of

the porous media.

C. Mean excess plot of, and generalized Pareto distribution

approximation for, streamwise velocities

Probability density functions (p.d.f.) of the streamwise

velocity component reported in previous studies [27,48,49]

indicated that it is of positive skewness and exponential decay.

In this study, we employed the mean excess plot [28] to

further study the probability density functions of the positive

streamwise velocity component (right tail). The mean excess
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FIG. 5. Contour of streamwise velocity of (a) porous foam, (c) sphere packing via DEM, and (e) Bentheimer sandstone (grain phase marked

out using white color); S2 along Ruu of (b) porous foam, (d) sphere packing via DEM, and (f) Bentheimer sandstone; separation distance r in

pixel units.

plot is defined in terms of the behavior of the mean excess

function as follows:

M(u) = E[� − u|� > u] =

∫ θF

u
F (θ )dθ

F (u)
, (16)

where � denotes a random variable conditioning on the

threshold value u (u is adopted as we study the velocity

component) with distribution function F (θ ), tail distribu-

tion function F (θ ) = 1 − F (θ ), and right end point θF . As

discussed by Ghosh and Resnick [28], the mean excess plot

can be used to distinguish heavy and light tail distributions of

random variables in terms of its trend. For example, a heavy

tail distribution, e.g., the lognormal distribution or power law,

typically tends to infinity; an exponential distribution Exp(λ)

with M(u) = λ−1, a horizontal line for the whole variable

range; a light tail distribution tends to zero.

Figure 6 shows that the probability density distributions

(p.d.f.) and mean excess plots of the positive streamwise
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FIG. 6. Probability density functions (p.d.f.) and mean excess plots of positive streamwise velocity of (a, b) porous foam, (c, d) sphere

packing via DEM, and (e, f) Bentheimer sandstone.

velocity component (right tail) normalized through the aver-

aged value. As can be observed from the p.d.f. plots shown in

Figs. 6(a), 6(c), and 6(e), the streamwise velocity is widely

distributed. Further, the lower the porosity, the wider the

distribution. This can be explained by the fact that there exist

more slow flow regions within the more complex pore space.

This result is also consistent with the wide distribution of

experimental measurements shown by Datta et al. [27] and

simulation results shown by Bijeljic et al. [52] and Siena

et al. [49]. As can be seen through the mean excess plots

shown in Figs. 6(b), 6(d), and 6(f), the positive streamwise

velocity components for the three porous materials show very

interesting features. First, the curves of the mean excess plots

attain unity at the threshold value of 0 as the streamwise

velocities were normalized by the average value. Second,

the curves of the mean excess plots tend to zero at the right

end point of the streamwise velocity. This indicates that the

streamwise velocity components obey light tail distributions
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[28]. Second, each figure shows a region of relatively constant

slope, which indicates that the velocity within this region

can be approximated by an exponential distribution. This is

consistent with the exponential approximation for the positive

streamwise velocity studied by Siena et al. [49]. However, each

mean excess function shows strikingly different slopes for the

whole right tail. Particularly, opposite signs can be observed on

the slopes of the mean excess function of streamwise velocity

of flow through the sphere packing and Bentheimer sandstone.

Third, the mean excess function is close to linear for high

values of the threshold u. This justifies that using a generalized

Pareto distribution is appropriate to describe the statistical

properties of right tail of the streamwise velocity.

A random variable � has a generalized Pareto distribution

(GPD) if it has a cumulative distribution function (c.d.f.) of

the form

Gξ,β (θ ) =

{

1 − (1 + ξθ/β)−1/ξ if ξ �= 0,

1 − exp(−θ/β) if ξ = 0,
(17)

where ξ denotes the shape parameter of the distribution and β

the scale parameter (β > 0). The range of θ is θ > 0 for ξ � 0

and 0 < θ < −β/ξ for ξ < 0. Substituting the generalized

Pareto distribution (GPD) Gξ,β (θ ) for the distribution function

F (θ ), from the mean excess function Eq. (16), we have

P(� − u < θ |� > u)

=
P(u < � � θ + u)

P(� > u)

=
Gξ,β (θ + u) − Gξ,β (u)

1 − Gξ,β (u)

=
(1 + ξu/β)−1/ξ − (1 + ξ (θ + u)/β)−1/ξ

(1 + ξu/β)−1/ξ

= 1 − (1 + ξθ/(β + ξu))−1/ξ , (18)

which indicates that if θ is a generalized Pareto distribution

of Gξ,β , then θ − u, conditioning on θ > u, is a generalized

Pareto distribution of Gξ,β+ξu. This further confirms that if a

generalized Pareto distribution is consistent with a set of data

for a given threshold value, it then must be consistent with the

data for all values greater than the given threshold value.

The method of moments proposed by Hosking and Wallis

[53] was used to estimate the parameter ξ and β. The values of

TABLE III. Values of parameter ξ and β.

Samples ξ β

Porous foam −0.6046 1.567

Sphere packing −0.00955 1.044

Bentheimer sandstone 0.2003 1.345

ξ and β for the three samples are shown in Table III. Figure 7

shows the generalized Pareto distribution approximation of

positive streamwise velocities. It can be observed that the

approximation is in good agreement with the simulated

velocity data that display a near exponential behavior. We

also noted that a stretched exponential distribution was used

to fit the right tail of the streamwise velocity component

by Siena et al. [49]. Siena et al. also found that there is a

strong correlation between the key parameters controlling the

decay of probability distribution functions of the streamwise

velocity component and pore sizes. It should be possible,

therefore, to investigate the relationship of the generalized

Pareto distribution for the streamwise velocity component and

the probability density function of pore sizes for the three

random porous samples presented in this study.

IV. SUMMARY AND REMARKS

In this paper, we used the lattice Boltzmann method to

simulate pore-scale flows within three porous samples. The

three porous samples were determined as statistically isotropic

and each has size greater than the size of the corresponding

representative element volume as a result of the two-point

correlation function of the complex pore space.

Through investigating the correlation functions of the com-

plex pore spaces and velocity fields of three porous materials,

we found that the spatially varying random velocity field is

strongly influenced by the inherent pore structures, especially

the length scale for the velocity field is directly related to

the length scale of the underlying complex pore space. This

is crucial to understand transport phenomena within porous

media. We may define different corresponding characteristic

length scales in terms of Ruu(r), e.g., the convective length

scale Lc and the diffusive length scale Ld . However, we plan

to calculate the permeability κ and explore the relationship

between the length scales of flow field or the pore space
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FIG. 7. Cumulative distribution functions (c.d.f.) and generalized Pareto distribution approximation for positive streamwise velocity of (a)

porous foam, (b) sphere packing via DEM, and (c) Bentheimer sandstone.
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and permeability. Future work should therefore be focusing

on evaluating whether there might be another prediction of

permeability for a wide range of porous media.

Through the mean excess plots of the positive streamwise

velocity components, we confirmed that they obey light-tail

distributions and can be approximated by a generalized Pareto

distribution.
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