100 research outputs found

    Public building energy efficiency - an IoT approach

    Get PDF
    Buildings play an important role in energy consumption, mainly in the operation phase. Current development on IoT allows implementing sustainable actions in building towards savings, identify consumption patterns and relate consumption with space usage. Comfort parameters can be defined, and a set of services can be implemented toward the goals of saving energy and water. This approach can be replicated in most buildings and considerable savings can be achieved thus contributing to a more sustainable world without negative impact on building users’ comfort.info:eu-repo/semantics/acceptedVersio

    Pythagoras project: Development of an innovative training package on Indoor Environment Quality

    Get PDF
    The aim of the Pythagoras project is the development and assessment of Greek national training material in the sector of indoor environmental quality. The need for education in this specific sector is dictated by the significant indoor environment deterioration and associated health hazards, which are caused by low ventilation levels, combined with the use of many modern building materials that aggravate pollutants emissions. Early in the project, a review is undertaken of the international literature and the syllabuses of foreign research and educational institutions active in indoor environment quality issues. At the same time, the requirements of the Greek educational and broader society, related to issues of indoor pollution and health, are determined. A training methodology is consequently developed, with the objective to optimally cover all the parameters associated with the indoor environment quality, for trainees of various disciplines. The training material is produced both in printed (book) and integrated electronic (e-learning) format. Additionally, four seminars are organized covering the respective sections of the training package. The training package is being assessed both by the trainees but also by international experts in the sector of indoor environment quality

    A Semi-Distributed Electric Demand-Side Management System with PV Generation for Self-Consumption Enhancement

    Get PDF
    This paper presents the operation of an Electrical Demand-Side Management (EDSM) system in a real solar house. The use of EDSM is one of the most important action lines to improve the grid electrical efficiency. The combination between the EDSM and the PV generation performs a new control level in the local electric behavior and allows new energy possibilities. The solar house used as test-bed for the EDSM system owns a PV generator, a lead-acid battery storage system and a grid connection. The electrical appliances are controllable from an embedded computer. The EDSM is implemented by a control system which schedules the tasks commanded by the user. By using the control system, we define the house energy policy and improve the energy behavior with regard to a selected energy criterion, self-consumption. The EDSM system favors self-consumption with regard to a standard user behavior and reduces the energy load from the grid

    Examining the benefits and barriers for the implementation of Net Zero Energy settlements

    Get PDF
    The transition of the Net Zero Energy (NZE) concept from building to settlement scale has been theoretically approached in a number of studies. This paper examines the benefits and barriers associated with the implementation of the NZE concept at a settlement scale, by adopting a comprehensive approach for the design, construction, and monitoring of NZE settlements that was developed in the EU Horizon 2020 ZERO-PLUS project and implemented in four case studies. First, the ZERO-PLUS approach is presented, followed by an analysis of associated benefits and encountered barriers. Next, the roles of different stakeholders involved in the process are identified through stakeholder analysis. Finally, new dynamics that emerge and are critical to the successful implementation of NZE settlements are discussed. The ZERO-PLUS approach leads to achieving NZE settlements with an initial cost that is on average 16% lower than the cost of a typical NZEB, while achieving a net regulated energy consumption of less than 20 kWh/m2/year and renewable energy production of more than 50 kWh/m2/year. The implementation of NZE settlements revealed two main issues: 1) the external barriers that were raised by the planning policies and regulations; and 2) the challenge of managing and integrating the needs and requirements of project stakeholders. To overcome these barriers while reaping the benefits of the approach, the management of such projects needs to focus from the outset on the establishment of a project management structure that will ensure the coordination and integration of various stakeholders. The use of a standardized collaboration protocol from the preliminary design stage is recommended to facilitate future projects. Simultaneously, regulations need to be updated towards facilitating NZE settlement implementation

    Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces

    Get PDF
    This paper deals with the interactions between biophysical and microclimatic factors on the one hand with, on the other, the urban morphology of intermediate urban open spaces, the relationship between environmental and bioclimatic thermal comfort, and the implementation of innovative materials and the use of greenery, aimed at the users’ well-being. In particular, the thermal comfort of the open spaces of the consolidated fabrics of the city of Rome is studied, by carrying out simulations of cooling strategies relating to two scenarios applied to Piazza Bainsizza. The first scenario involves the use of cool materials for roofs, cladding surfaces, and pavement, while the second scenario, in addition to the cool materials employed in the first scenario, also includes the use of greenery and permeable green surfaces. The research was performed using summer and winter microclimatic simulations of the CFD (ENVI-met v. 3.1) type, in order to determine the dierent influences of the materials with cold colors, trees, and vegetated surfaces on the thermal comfort of the urban morphology itself. Meanwhile, the comfort assessment was determined through the physiological equivalent temperature (PET) calculated with the RayMan program. The first scenario, with the use of cool materials, improves summer conditions and reduces the urban heat island eect but does not eliminate thermal discomfort due to the lack of shaded surfaces and vegetation. The second scenario, where material renovations is matched with vegetation improvements, has a slightly bad eect on winter conditions but drastically ameliorates the summer situation, both for direct users and, thanks to the strong reduction of the urban heat island eect, to urban inhabitants as a whole

    An internet of things and blockchain based smart campus architecture

    Get PDF
    Rapid development in science and information technologies, such as the Internet of things, has led to a growth in the number of studies and research papers on smart cities in recent years and more specifically on the construction of smart campus technologies. This paper will review the concept of a smart campus, discuss the main technologies deployed, and then propose a new novel framework for a smart campus. The architecture of this new smart campus approach will be discussed with particular consideration of security and privacy systems, the Internet of things, and blockchain technologies

    From the Sum of Near-Zero Energy Buildings to the Whole of a Near-Zero Energy Housing Settlement: The Role of Communal Spaces in Performance-Driven Design

    Get PDF
    Almost a century ago Modernism challenged the structure of the city and reshaped its physical space in order to, amongst other things, accommodate new transportation infrastructure and road networks proclaiming the,nowadays much-debated ‘scientificated’ pursuit of efficiency for the city. This transformation has had a great impact on the way humans still design, move in, occupy and experience the city. Today major cities in Europe, such as Paris and London, are considering banning vehicles from their historic centers. In parallel, significant effort is currently underway internationally by designers, architects, and engineers to integrate innovative technologies and sophisticated solutions for energy production, management, and storage, as well as for efficient energy consumption, into the architecture of buildings. In general, this effort seeks for new technologies and design methods (e.g., DesignBuilder with EnergyPlus simulation engine; Rhicoceros3D with Grasshopper plugin and Ecotect, Radiance and EnergyPlus tools) that would enable a holistic approach to the spatial design of Near-Zero Energy buildings, so that their ecological benefits are an added value to the architectural design and a building’s visual, and material, impact on its surrounding space. The paper inquires how the integration of such technological infrastructure and performance-orientated interfaces changes yet again the structure and form of cities, and to what extent it safeguards social rights and enables equal access to common resources. Drawing from preliminary results and initial considerations of ongoing research that involve the construction of four innovative NZE settlements across Europe, in the context of the EU-funded ZERO-PLUS project, this paper discusses the integration of novel infrastructure in communal spaces of these settlements. In doing so, it contributes to the debate about smart communities and their role in the sustainable management of housing developments and settlements that are designed and developed with the concept of smart territories

    On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe

    No full text
    Extreme weather conditions in urban areas have a serious impact on the quality of life, energy consumption and health of urban citizens. In addition energy poverty has a serious impact on the quality of life of low income households. The aim of the present paper is review the actual housing status of low income population in Europe and discuss issues related to the impact of urban overheating and extreme weather phenomena on the specific energy consumption, indoor environmental conditions and health. Finally advanced low cost mitigation and adaptation technologies developed during the last years that offer a serious potential for energy and environmental improvements which can contribute to improve the quality of life of low income population are presented. © 2014 Elsevier B.V. All rights reserved

    Review of the indoor environmental quality and energy consumption studies for low income households in Europe

    No full text
    The term energy poverty is used to describe a situation of a household not able to satisfy socially and materially the required levels of its energy services. Energy and fuel poverty is an increasing problem in the European Union. Although the specific conditions vary from country to country the drivers defining fuel and energy poverty are similar in all Europe. This paper aims to present the state of the art regarding the energy demand and indoor environmental quality of low income households in Europe. The characteristics of this specific population group are presented including details on the specific energy consumption, the indoor comfort and finally the impact of the specific living conditions on the occupants' health. © 2015 Elsevier B.V
    corecore