58 research outputs found

    Invariant Differential Operators for Non-Compact Lie Groups: the Sp(n,R) Case

    Full text link
    In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebras sp(n,R), in detail for n=6. Our choice of these algebras is motivated by the fact that they belong to a narrow class of algebras, which we call 'conformal Lie algebras', which have very similar properties to the conformal algebras of Minkowski space-time. We give the main multiplets and the main reduced multiplets of indecomposable elementary representations for n=6, including the necessary data for all relevant invariant differential operators. In fact, this gives by reduction also the cases for n<6, since the main multiplet for fixed n coincides with one reduced case for n+1.Comment: Latex2e, 27 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:0812.2690, arXiv:0812.265

    Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall

    Get PDF
    This study investigates long-term trends in tropical cyclones (TCs) over the extratropical western North Pacific (WNP) over a period of 35 years (1982-2016). The area analyzed extended across 30-45 degrees N and 120-150 degrees E, including the regions of Korea and Japan that were seriously affected by TCs. The northward migration of TCs over the WNP to the mid-latitudes showed a sharp increase in early fall. In addition, the duration of TCs over the WNP that migrated northwards showed an increase, specifically in early to mid-September. Therefore, more recently, TC tracks have been observed to significantly extend into the mid-latitudes. The recent northward extension of TC tracks over the WNP in early fall was observed to be associated with changes in environmental conditions that were favorable for TC activities, including an increase in sea surface temperature (SST), decrease in vertical wind shear, expansion of subtropical highs, strong easterly steering winds, and an increase in relative vorticity. In contrast, northward migrations of TCs to Korea and Japan showed a decline in late August, because of the presence of unfavorable environmental conditions for TC activities. These changes in environmental conditions, such as SST and vertical wind shear, can be partially associated with the Pacific decadal oscillation

    Quantum cellular automata quantum computing with endohedral fullerenes

    Get PDF
    We present a scheme to perform universal quantum computation using global addressing techniques as applied to a physical system of endohedrally doped fullerenes. The system consists of an ABAB linear array of Group V endohedrally doped fullerenes. Each molecule spin site consists of a nuclear spin coupled via a Hyperfine interaction to an electron spin. The electron spin of each molecule is in a quartet ground state S=3/2S=3/2. Neighboring molecular electron spins are coupled via a magnetic dipole interaction. We find that an all-electron construction of a quantum cellular automata is frustrated due to the degeneracy of the electronic transitions. However, we can construct a quantum celluar automata quantum computing architecture using these molecules by encoding the quantum information on the nuclear spins while using the electron spins as a local bus. We deduce the NMR and ESR pulses required to execute the basic cellular automata operation and obtain a rough figure of merit for the the number of gate operations per decoherence time. We find that this figure of merit compares well with other physical quantum computer proposals. We argue that the proposed architecture meets well the first four DiVincenzo criteria and we outline various routes towards meeting the fifth criteria: qubit readout.Comment: 16 pages, Latex, 5 figures, See http://planck.thphys.may.ie/QIPDDF/ submitted to Phys. Rev.

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Spectroscopic target selection for the Sloan Digital Sky Survey: The luminous red galaxy sample

    Get PDF
    We describe the target selection and resulting properties of a spectroscopic sample of luminous red galaxies (LRGs) from the imaging data of the Sloan Digital Sky Survey (SDSS). These galaxies are selected on the basis of color and magnitude to yield a sample of luminous intrinsically red galaxies that extends fainter and farther than the main flux-limited portion of the SDSS galaxy spectroscopic sample. The sample is designed to impose a passively evolving luminosity and rest-frame color cut to a redshift of 0.38. Additional, yet more luminous red galaxies are included to a redshift of ∼0.5. Approximately 12 of these galaxies per square degree are targeted for spectroscopy, so the sample will number over 100,000 with the full survey. SDSS commissioning data indicate that the algorithm efficiently selects luminous (M*g ≈ - 21.4) red galaxies, that the spectroscopic success rate is very high, and that the resulting set of galaxies is approximately volume limited out to z = 0.38. When the SDSS is complete, the LRG spectroscopic sample will fill over 1 h-3 Gpc3 with an approximately homogeneous population of galaxies and will therefore be well suited to studies of large-scale structure and clusters out to z = 0.5

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions

    Get PDF
    Publication history: Accepted - 7 December 2016; Published online - 1 February 2017.Efforts to reduce the carbon footprint of milk production through selection and management of low-emitting cows require accurate and large-scale measurements of methane (CH4) emissions from individual cows. Several techniques have been developed to measure CH4 in a research setting but most are not suitable for large-scale recording on farm. Several groups have explored proxies (i.e., indicators or indirect traits) for CH4; ideally these should be accurate, inexpensive, and amenable to being recorded individually on a large scale. This review (1) systematically describes the biological basis of current potential CH4 proxies for dairy cattle; (2) assesses the accuracy and predictive power of single proxies and determines the added value of combining proxies; (3) provides a critical evaluation of the relative merit of the main proxies in terms of their simplicity, cost, accuracy, invasiveness, and throughput; and (4) discusses their suitability as selection traits. The proxies range from simple and low-cost measurements such as body weight and high-throughput milk mid-infrared spectroscopy (MIR) to more challenging measures such as rumen morphology, rumen metabolites, or microbiome profiling. Proxies based on rumen samples are generally poor to moderately accurate predictors of CH4, and are costly and difficult to measure routinely onfarm. Proxies related to body weight or milk yield and composition, on the other hand, are relatively simple, inexpensive, and high throughput, and are easier to implement in practice. In particular, milk MIR, along with covariates such as lactation stage, are a promising option for prediction of CH4 emission in dairy cows. No single proxy was found to accurately predict CH4, and combinations of 2 or more proxies are likely to be a better solution. Combining proxies can increase the accuracy of predictions by 15 to 35%, mainly because different proxies describe independent sources of variation in CH4 and one proxy can correct for shortcomings in the other(s). The most important applications of CH4 proxies are in dairy cattle management and breeding for lower environmental impact. When breeding for traits of lower environmental impact, single or multiple proxies can be used as indirect criteria for the breeding objective, but care should be taken to avoid unfavorable correlated responses. Finally, although combinations of proxies appear to provide the most accurate estimates of CH4, the greatest limitation today is the lack of robustness in their general applicability. Future efforts should therefore be directed toward developing combinations of proxies that are robust and applicable across diverse production systems and environments.Technical and financial support from the COST Action FA1302 of the European Union

    Nutritional intervention during gestation alters growth, body composition and gene expression patterns in skeletal muscle of pig offspring

    Get PDF
    peer-reviewedVariations in maternal nutrition during gestation can influence foetal growth, foetal development and permanently ‘programme’ offspring for postnatal life. The objective of this study was to analyse the effect of increased maternal nutrition during different gestation time windows on offspring growth, carcass quality, meat quality and gene expression in skeletal muscle. A total of 64 sows were assigned to the following feeding treatments: a standard control diet at a feed allocation of 2.3 kg/day throughout gestation, increased feed allowance of 4.6 kg/day from 25 to 50 days of gestation (dg), from 50 to 80 dg and from 25 to 80 dg. At weaning, Light, Medium and Heavy pigs of the same gender, within litter, were selected based on birth weight, individually penned and monitored until slaughter at 130 days post weaning. Carcass and meat quality traits of the semimembranosus (SM) muscle were recorded post mortem. A cross section of the semitendinosus (ST) muscle encompassing the deep and superficial regions were harvested from pigs (n518 per treatment) for RNA extraction and quantification of gene expression by real-time PCR. The results showed that doubling the feed intake from 25 to 50 dg reduced offspring growth, carcass weight, intramuscular fat content and increased drip loss of the SM muscle. Interestingly, protein phosphatase 3 catalytic subunit – a-isoform, which codes for the transcription factor calcineurin, was upregulated in the ST muscle of offspring whose mothers received increased feed allowance from 25 to 50 dg. This may provide an explanation for the previous observed increases in Type IIa muscle fibres of these offspring. Increasing the maternal feed intake from 50 to 80 dg negatively impacted pig growth and carcass weight, but produced leaner male pigs. Extending the increased maternal feed intake from 25 to 80 dg had no effect on offspring over the standard control gestation diet. Although intra-litter variation in pig weight is a problem for pig producers, increased maternal feeding offered no improvement throughout life to the lighter birth weight littermates in our study. Indeed, increased maternal nutrition at the three-gestation time windows selected provided no major benefits to the offspring.Teagasc, under the National Development Plan; Teagasc Walsh Fellowship; Short Term Scientific Mission (STSM) fund, COST925
    corecore