139 research outputs found
Mothers' perceptions of child weight status and the subsequent weight gain of their children : a population based longitudinal study
BACKGROUND: There is a plethora of cross sectional work on maternal perceptions of child weight status showing that mothers typically do not classify their overweight child as being overweight according to commonly used clinical criteria. Awareness of overweight in their child is regarded as an important prerequisite for mothers to initiate appropriate action. The gap in the literature is determining whether, if mothers do classify their overweight child's weight status correctly, this is associated with a positive outcome for the child's body mass index (BMI) at a later stage. OBJECTIVE: To explore longitudinal perceptions of child weight status from mothers of a contemporary population-based birth cohort (Gateshead Millennium Study) and relationships of these perceptions with future child weight gain. METHODS: Data collected in the same cohort at 7, 12 and 15 years of age: mothers' responses to two items concerning their child's body size; child's and mother's BMI; pubertal maturation; demographic information. RESULTS: Mothers' perceptions of whether their child was overweight did not change markedly over time. Child BMI was the only significant predictor of mothers' classification of overweight status, and it was only at the extreme end of the overweight range and in the obese range that mothers reliably described their child as overweight. Even when mothers did appropriately classify their child as overweight at an earlier stage, this was not related to relatively lower child BMI a few years later. CONCLUSIONS: Mothers tend to classify their child as overweight in only more extreme cases. It is an important finding that no beneficial impact was shown on later child BMI in overweight children whose mothers classified their child's weight status as overweight at an earlier stage.International Journal of Obesity accepted article preview online, 25 January 2017. doi:10.1038/ijo.2017.20
Genetic aspects of dental disorders
The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.This paper reviews past and present applications of quantitative and molecular genetics to dental disorders. Examples are given relating to craniofacial development (including malocclusion), oral supporting tissues (including periodontal diseases) and dental hard tissues (including defects of enamel and dentine as well as dental caries). Future developments and applications to clinical dentistry are discussed. Early investigations confirmed genetic bases to dental caries, periodontal diseases and malocclusion, but research findings have had little impact on clinical practice. The complex multifactorial aetiologies of these conditions, together with methodological problems, have limited progress until recently. Present studies are clarifying previously unrecognized genetic and phenotypic heterogeneities and attempting to unravel the complex interactions between genes and environment by applying new statistical modelling approaches to twin and family data. linkage studies using highly polymorphic DNA markers are providing a means of locating candidate genes, including quantitative trait loci (QTL). In future, as knowledge increases: it should be possible to implement preventive strategies for those genetically-predisposed individuals who are identified-predisposed individuals who are identified to be at risk.Grant C. Townsend, Michael J. Aldred and P. Mark Bartol
Early Predictors of Objectively Measured Physical Activity and Sedentary Behaviour in 8–10 Year Old Children: The Gateshead Millennium Study
With a number of studies suggesting associations between early life influences and later chronic disease risk, it is suggested that associations between early growth and later physical activity (PA) may be a mediator. However, conflicting evidence exists for association between birth weight and childhood PA. In addition, it is important to know what other, potentially modifiable, factors may influence PA in children given its' association with childhood and later adiposity. We used the Gateshead Millennium Study (GMS) to identify predictors of childhood PA levels. The GMS is a cohort of 1029 infants born in 1999–2000 in Gateshead in northern England. Throughout infancy and early childhood, detailed information was collected. Assessments at age 9 years included body composition, objective measures of habitual PA and a range of lifestyle factors. Mean total volumes of PA (accelerometer count per minute, cpm) and moderate-vigorous intensity PA (MVPA), and the percentage of time spent in sedentary behaviour (%SB) were quantified and related to potential predictors using linear regression and path analysis. Children aged 8–10 years were included. Significant differences were seen in all three outcome variables between sexes and season of measurement (p<0.001). Restricting children’s access to television was associated with decreased MVPA. Increased paternal age was associated with significant increases in %SB (p = 0.02), but not MVPA or total PA. Increased time spent in out of school sports clubs was significantly associated with decreased %SB (p = 0.02). No significant associations were seen with birth weight. A range of factors, directly or indirectly, influenced PA and sedentary behaviour. However, associations differed between the different constructs of PA and %SB. Exploring further the sex differences in PA would appear to be useful, as would encouraging children to join out of school sports clubs
Energy Reallocation to Breeding Performance through Improved Nest Building in Laboratory Mice.
Mice are housed at temperatures (20-26°C) that increase their basal metabolic rates and impose high energy demands to maintain core temperatures. Therefore, energy must be reallocated from other biological processes to increase heat production to offset heat loss. Supplying laboratory mice with nesting material may provide sufficient insulation to reduce heat loss and improve both feed conversion and breeding performance. Naïve C57BL/6, BALB/c, and CD-1breeding pairs were provided with bedding alone, or bedding supplemented with either 8g of Enviro-Dri, 8g of Nestlets, for 6 months. Mice provided with either nesting material built more dome-like nests than controls. Nesting material improved feed efficiency per pup weaned as well as pup weaning weight. The breeding index (pups weaned/dam/week) was higher when either nesting material was provided. Thus, the sparing of energy for thermoregulation of mice given additional nesting material may have been responsible for the improved breeding and growth of offspring
Excitability and Synaptic Alterations in the Cerebellum of APP/PS1 Mice
In Alzheimer's disease (AD), the severity of cognitive symptoms is better correlated with the levels of soluble amyloid-beta (Aβ) rather than with the deposition of fibrillar Aβ in amyloid plaques. In APP/PS1 mice, a murine model of AD, at 8 months of age the cerebellum is devoid of fibrillar Aβ, but dosage of soluble Aβ1–42, the form which is more prone to aggregation, showed higher levels in this structure than in the forebrain. Aim of this study was to investigate the alterations of intrinsic membrane properties and of synaptic inputs in Purkinje cells (PCs) of the cerebellum, where only soluble Aβ is present. PCs were recorded by whole-cell patch-clamp in cerebellar slices from wild-type and APP/PS1 mice. In APP/PS1 PCs, evoked action potential discharge showed enhanced frequency adaptation and larger afterhyperpolarizations, indicating a reduction of the intrinsic membrane excitability. In the miniature GABAergic postsynaptic currents, the largest events were absent in APP/PS1 mice and the interspike intervals distribution was shifted to the left, but the mean amplitude and frequency were normal. The ryanodine-sensitive multivescicular release was not altered and the postsynaptic responsiveness to a GABAA agonist was intact. Climbing fiber postsynaptic currents were normal but their short-term plasticity was reduced in a time window of 100–800 ms. Parallel fiber postsynaptic currents and their short-term plasticity were normal. These results indicate that, in the cerebellar cortex, chronically elevated levels of soluble Aβ1–42 are associated with alterations of the intrinsic excitability of PCs and with alterations of the release of GABA from interneurons and of glutamate from climbing fibers, while the release of glutamate from parallel fibers and all postsynaptic mechanisms are preserved. Thus, soluble Aβ1–42 causes, in PCs, multiple functional alterations, including an impairment of intrinsic membrane properties and synapse-specific deficits, with differential consequences even in different subtypes of glutamatergic synapses
Heat or Insulation: Behavioral Titration of Mouse Preference for Warmth or Access to a Nest
In laboratories, mice are housed at 20–24°C, which is below their lower critical temperature (≈30°C). This increased thermal stress has the potential to alter scientific outcomes. Nesting material should allow for improved behavioral thermoregulation and thus alleviate this thermal stress. Nesting behavior should change with temperature and material, and the choice between nesting or thermotaxis (movement in response to temperature) should also depend on the balance of these factors, such that mice titrate nesting material against temperature. Naïve CD-1, BALB/c, and C57BL/6 mice (36 male and 36 female/strain in groups of 3) were housed in a set of 2 connected cages, each maintained at a different temperature using a water bath. One cage in each set was 20°C (Nesting cage; NC) while the other was one of 6 temperatures (Temperature cage; TC: 20, 23, 26, 29, 32, or 35°C). The NC contained one of 6 nesting provisions (0, 2, 4, 6, 8, or 10g), changed daily. Food intake and nest scores were measured in both cages. As the difference in temperature between paired cages increased, feed consumption in NC increased. Nesting provision altered differences in nest scores between the 2 paired temperatures. Nest scores in NC increased with increasing provision. In addition, temperature pairings altered the difference in nest scores with the smallest difference between locations at 26°C and 29°C. Mice transferred material from NC to TC but the likelihood of transfer decreased with increasing provision. Overall, mice of different strains and sexes prefer temperatures between 26–29°C and the shift from thermotaxis to nest building is seen between 6 and 10 g of material. Our results suggest that under normal laboratory temperatures, mice should be provided with no less than 6 grams of nesting material, but up to 10 grams may be needed to alleviate thermal distress under typical temperatures
Mitochondrial Ca2+ Overload Underlies Aβ Oligomers Neurotoxicity Providing an Unexpected Mechanism of Neuroprotection by NSAIDs
Dysregulation of intracellular Ca2+ homeostasis may underlie amyloid β peptide (Aβ) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Aβ1–42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Aβ fibrils, induce a massive entry of Ca2+ in neurons and promote mitochondrial Ca2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Aβ oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca2+ overload, cytochrome c release and cell death induced by Aβ oligomers. Our results indicate that i) mitochondrial Ca2+ overload underlies the neurotoxicity induced by Aβ oligomers and ii) inhibition of mitochondrial Ca2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Aβ oligomers and AD
Evolving uses of oral reverse transcriptase inhibitors in the HIV-1 epidemic: From treatment to prevention
The HIV epidemic continues unabated, with no highly effective vaccine and no cure. Each new infection has significant economic, social and human costs and prevention efforts are now as great a priority as global antiretroviral therapy (ART) scale up. Reverse transcriptase inhibitors, the first licensed class of ART, have been at the forefront of treatment and prevention of mother to child transmission over the past two decades. Now, their use in adult prevention is being
Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed
- …