238 research outputs found

    The viscosity of R32 and R125 at saturation

    Get PDF
    This paper reports new measurements of the viscosity of R32 and R125, in both the liquid and the vapor phase, over the temperature range 220 to 343 K near the saturation line. The measurements in both liquid and vapor phases have been carried out with a vibrating-wire viscometer calibrated with respect to standard reference values of viscosity. It is estimated that the uncertainty of the present viscosity data is one of 0.5-1%, being limited partly by the accuracy of the available density data. The experimental data have been represented by polynomial functions of temperature for the purposes of interpolation

    Notes on the Third Law of Thermodynamics.I

    Get PDF
    We analyze some aspects of the third law of thermodynamics. We first review both the entropic version (N) and the unattainability version (U) and the relation occurring between them. Then, we heuristically interpret (N) as a continuity boundary condition for thermodynamics at the boundary T=0 of the thermodynamic domain. On a rigorous mathematical footing, we discuss the third law both in Carath\'eodory's approach and in Gibbs' one. Carath\'eodory's approach is fundamental in order to understand the nature of the surface T=0. In fact, in this approach, under suitable mathematical conditions, T=0 appears as a leaf of the foliation of the thermodynamic manifold associated with the non-singular integrable Pfaffian form δQrev\delta Q_{rev}. Being a leaf, it cannot intersect any other leaf S=S= const. of the foliation. We show that (N) is equivalent to the requirement that T=0 is a leaf. In Gibbs' approach, the peculiar nature of T=0 appears to be less evident because the existence of the entropy is a postulate; nevertheless, it is still possible to conclude that the lowest value of the entropy has to belong to the boundary of the convex set where the function is defined.Comment: 29 pages, 2 figures; RevTex fil

    Determination of Debye Temperatures and Lamb-Mössbauer Factors for LnFeO3 Orthoferrite Perovskites (Ln = La, Nd, Sm, Eu, Gd)

    Get PDF
    Lanthanide orthoferrites have wide-ranging industrial uses including solar, catalytic and electronic applications. Here a series of lanthanide orthoferrite perovskites, LnFeO3 (Ln = La; Nd; Sm; Eu; Gd), prepared through a standard stoichiometric wet ball milling route using oxide precursors, has been studied. Characterisation through X-ray diffraction and X-ray fluorescence confirmed the synthesis of phase-pure or near-pure LnFeO3 compounds. 57Fe Mössbauer spectroscopy was performed over a temperature range of 10 K to 293 K to observe hyperfine structure and to enable calculation of the recoil-free fraction and Debye temperature (θD) of each orthoferrite. Debye temperatures (Ln = La 474 K; Nd 459 K; Sm 457 K; Eu 452 K; Gd 473 K) and recoil-free fractions (Ln = La 0.827; Nd 0.817; Sm 0.816; Eu 0.812; Gd 0.826) were approximated through minimising the difference in the temperature dependent experimental Centre Shift (CS) and theoretical Isomer Shift (IS), by allowing the Debye temperature and Isomer Shift values to vary. This method of minimising the difference between theoretical and actual values yields Debye temperatures consistent with results from other studies determined through thermal analysis methods. This displays the ability of variable-temperature Mössbauer spectroscopy to approximate Debye temperatures and recoil-free fractions, whilst observing temperature induced transitions over the temperature range observed. X-ray diffraction and Rietveld refinement show an inverse relationship between FeO6 octahedral volume and approximated Debye temperatures. Raman spectroscopy show an increase in the band positions attributed to soft modes of Ag symmetry, Ag(3) and Ag(5) from La to GdFeO3 corresponding to octahedral rotations and tilts in the [010] and [101] planes respectively

    Cardiac and Pulmonary Dosimetric Parameters in Lung Cancer Patients Undergoing Post-Operative Radiation Therapy in the Real-World Setting

    Get PDF
    Purpose/Objective(s): The recently published Lung ART trial reported increased rates of cardiac and pulmonary toxicity in the post-operative radiation therapy arm. It remains unknown whether the dosimetric parameters reported in Lung ART are representative of real-world practice. The purpose of this study is to examine heart and lung dose exposure in patients receiving post-operative radiation therapy for non-small cell lung cancer (NSCLC) across a statewide consortium. Materials/Methods: From 2012 to 2020, 377 patients at 27 academic and community centers within the Michigan Radiation Oncology Quality Consortium (MROQC) underwent surgical resection followed by post-operative radiation therapy for non-metastatic NSCLC. Demographic and dosimetric data were prospectively collected for these patients. Rates of 3D-CRT and IMRT use were analyzed. Mean heart dose (MHD), heart V5, heart V35, mean lung dose (MLD), lung V20, target volume and minimum dose to 95% PTV were calculated for these patients and the reported dosimetric parameters were stratified by treatment modality. Results: 51% of patients in this cohort had N2 disease at the time of surgery, 18% had a positive margin. 65.8% of patients were treated with IMRT compared to 32.1% treated with 3D-CRT. Average MHD for all patients was 10.3 Gy, mean Heart V5 was 40.3% and mean heart V35 was 12.6%. Average MLD was 11.2 Gy and mean lung V20 was 18.9%. These dosimetric parameters did not significantly differ based on treatment modality, with MHD and MLD 9.9 Gy and 10.1 Gy, respectively, for patients treated with 3D-CRT compared to 10.6 Gy and 11.8 Gy for patients treated with IMRT. Conclusion: Cardiac and lung dosimetric parameters for patients receiving post-operative radiation therapy for NSCLC are similar to the dosimetric characteristics reported in Lung ART. The mean heart and mean lung doses observed are slightly lower (MHD 10.3 Gy, MLD 11.2 Gy) compared to Lung ART (MHD 13 Gy, MLD 13 Gy), possibly owing to increased use of IMRT. These data support application of Lung ART\u27s findings outside of the clinical trial setting

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Feature selection using Haar wavelet power spectrum

    Get PDF
    BACKGROUND: Feature selection is an approach to overcome the 'curse of dimensionality' in complex researches like disease classification using microarrays. Statistical methods are utilized more in this domain. Most of them do not fit for a wide range of datasets. The transform oriented signal processing domains are not probed much when other fields like image and video processing utilize them well. Wavelets, one of such techniques, have the potential to be utilized in feature selection method. The aim of this paper is to assess the capability of Haar wavelet power spectrum in the problem of clustering and gene selection based on expression data in the context of disease classification and to propose a method based on Haar wavelet power spectrum. RESULTS: Haar wavelet power spectra of genes were analysed and it was observed to be different in different diagnostic categories. This difference in trend and magnitude of the spectrum may be utilized in gene selection. Most of the genes selected by earlier complex methods were selected by the very simple present method. Each earlier works proved only few genes are quite enough to approach the classification problem [1]. Hence the present method may be tried in conjunction with other classification methods. The technique was applied without removing the noise in data to validate the robustness of the method against the noise or outliers in the data. No special softwares or complex implementation is needed. The qualities of the genes selected by the present method were analysed through their gene expression data. Most of them were observed to be related to solve the classification issue since they were dominant in the diagnostic category of the dataset for which they were selected as features. CONCLUSION: In the present paper, the problem of feature selection of microarray gene expression data was considered. We analyzed the wavelet power spectrum of genes and proposed a clustering and feature selection method useful for classification based on Haar wavelet power spectrum. Application of this technique in this area is novel, simple, and faster than other methods, fit for a wide range of data types. The results are encouraging and throw light into the possibility of using this technique for problem domains like disease classification, gene network identification and personalized drug design

    The Human Endogenous Circadian System Causes Greatest Platelet Activation during the Biological Morning Independent of Behaviors

    Get PDF
    Platelets are involved in the thromboses that are central to myocardial infarctions and ischemic strokes. Such adverse cardiovascular events have day/night patterns with peaks in the morning (~9 AM), potentially related to endogenous circadian clock control of platelet activation. The objective was to test if the human endogenous circadian system influences (1) platelet function and (2) platelet response to standardized behavioral stressors. We also aimed to compare the magnitude of any effects on platelet function caused by the circadian system with that caused by varied standardized behavioral stressors, including mental arithmetic, passive postural tilt and mild cycling exercise.We studied 12 healthy adults (6 female) who lived in individual laboratory suites in dim light for 240 h, with all behaviors scheduled on a 20-h recurring cycle to permit assessment of endogenous circadian function independent from environmental and behavioral effects including the sleep/wake cycle. Circadian phase was assessed from core body temperature. There were highly significant endogenous circadian rhythms in platelet surface activated glycoprotein (GP) IIb-IIIa, GPIb and P-selectin (6-17% peak-trough amplitudes; p ≤ 0.01). These circadian peaks occurred at a circadian phase corresponding to 8-9 AM. Platelet count, ATP release, aggregability, and plasma epinephrine also had significant circadian rhythms but with later peaks (corresponding to 3-8 PM). The circadian effects on the platelet activation markers were always larger than that of any of the three behavioral stressors.These data demonstrate robust effects of the endogenous circadian system on platelet activation in humans--independent of the sleep/wake cycle, other behavioral influences and the environment. The 9 AM timing of the circadian peaks of the three platelet surface markers, including platelet surface activated GPIIb-IIIa, the final common pathway of platelet aggregation, suggests that endogenous circadian influences on platelet function could contribute to the morning peak in adverse cardiovascular events as seen in many epidemiological studies

    Energy allocation and behaviour in the growing broiler chicken

    Get PDF
    Broiler chickens are increasingly at the forefront of global meat production but the consequences of fast growth and selection for an increase in body mass on bird health are an ongoing concern for industry and consumers. To better understand the implications of selection we evaluated energetics and behaviour over the 6-week hatch-to-slaughter developmental period in a commercial broiler. The effect of posture on resting metabolic rate becomes increasingly significant as broilers grow, as standing became more energetically expensive than sitting. The proportion of overall metabolic rate accounted for by locomotor behaviour decreased over development, corresponding to declining activity levels, mean and peak walking speeds. These data are consistent with the inference that broilers allocate energy to activity within a constrained metabolic budget and that there is a reducing metabolic scope for exercise throughout their development. Comparison with similarly sized galliforms reveals that locomotion is relatively energetically expensive in broilers
    corecore