We analyze some aspects of the third law of thermodynamics. We first review
both the entropic version (N) and the unattainability version (U) and the
relation occurring between them. Then, we heuristically interpret (N) as a
continuity boundary condition for thermodynamics at the boundary T=0 of the
thermodynamic domain. On a rigorous mathematical footing, we discuss the third
law both in Carath\'eodory's approach and in Gibbs' one. Carath\'eodory's
approach is fundamental in order to understand the nature of the surface T=0.
In fact, in this approach, under suitable mathematical conditions, T=0 appears
as a leaf of the foliation of the thermodynamic manifold associated with the
non-singular integrable Pfaffian form δQrev. Being a leaf, it cannot
intersect any other leaf S= const. of the foliation. We show that (N) is
equivalent to the requirement that T=0 is a leaf. In Gibbs' approach, the
peculiar nature of T=0 appears to be less evident because the existence of the
entropy is a postulate; nevertheless, it is still possible to conclude that the
lowest value of the entropy has to belong to the boundary of the convex set
where the function is defined.Comment: 29 pages, 2 figures; RevTex fil