3,141 research outputs found

    Interaction of Serum- and Glucocorticoid Regulated Kinase 1 (SGK1) with the WW-Domains of Nedd4-2 Is Required for Epithelial Sodium Channel Regulation

    Get PDF
    The epithelial sodium channel (ENaC) is an integral component of the pathway for Na(+) absorption in epithelial cells. The ubiquitin ligases Nedd4 and Nedd4-2 bind to ENaC and decrease its activity. Conversely, Serum- and Glucocorticoid regulated Kinase-1 (SGK1), a downstream mediator of aldosterone, increases ENaC activity. This effect is at least partly mediated by direct interaction between SGK and Nedd4-2. SGK binds both Nedd4 and Nedd4-2, but it is only able to phosphorylate Nedd4-2. Phosphorylation of Nedd4-2 reduces its ability to bind to ENaC, due to the interaction of phosphorylated Nedd4-2 with 14-3-3 proteins, and hence increases ENaC activity. WW-domains in Nedd4-like proteins bind PY-motifs (PPXY) present in ENaC subunits, and SGK also has a PY-motif.Here we show that single or tandem WW-domains of Nedd4 and Nedd4-2 mediate binding to SGK and that different WW-domains of Nedd4 and Nedd4-2 are involved. Our data also show that WW-domains 2 and 3 of Nedd4-2 mediate the interaction with SGK in a cooperative manner, that activated SGK has increased affinity for the WW-domains of Nedd4-2 in vitro, and a greater stimulatory effect on ENaC Na(+) transport compared to wildtype SGK. Further, SGK lacking a PY motif failed to stimulate ENaC activity in the presence of Nedd4-2.Binding of Nedd4-2 WW-domains to SGK is necessary for SGK-induced ENaC activity

    TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control

    Get PDF
    The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles

    Giant Thermoelectric Effect from Transmission Supernodes

    Full text link
    We predict an enormous order-dependent quantum enhancement of thermoelectric effects in the vicinity of a higher-order `supernode' in the transmission spectrum of a nanoscale junction. Single-molecule junctions based on 3,3'-biphenyl and polyphenyl ether (PPE) are investigated in detail. The nonequilibrium thermodynamic efficiency and power output of a thermoelectric heat engine based on a 1,3-benzene junction are calculated using many-body theory, and compared to the predictions of the figure-of-merit ZT.Comment: 5 pages, 6 figure

    The politics of the teaching of reading

    Get PDF
    Historically, political debates have broken out over how to teach reading in primary schools and infant classrooms. These debates and “reading wars” have often resulted from public concerns and media reportage of a fall in reading standards. They also reflect the importance placed on learning to read by parents, teachers, employers, and politicians. Public and media-driven controversies over the teaching of reading have resulted in intense public and professional debates over which specific methods and materials to use with beginning readers and with children who have reading difficulties. Recently, such debates have led to a renewed emphasis on reading proficiency and “standardized” approaches to teaching reading and engaging with literacy. The universal acceptance of the importance of learning to read has also led to vested interests in specific methods, reading programmes, and early literacy assessments amongst professional, business, commercial, and parental lobbying groups. This article traces these debates and the resulting growing support for a quantitative reductionist approach to early-reading programmes

    Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches

    Get PDF
    Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (KD). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.

    Equivalent parameters for series thermoelectrics

    Full text link
    We study the physical processes at work at the interface of two thermoelectric generators (TEGs) thermally and electrically connected in series. We show and explain how these processes impact on the system's performance: the derivation of the equivalent electrical series resistance yields a term whose physical meaning is thoroughly discussed. We demonstrate that this term must exist as a consequence of thermal continuity at the interface, since it is related to the variation of the junction temperature between the two TEGs associated in series as the electrical current varies. We then derive an expression for the equivalent series figure of merit. Finally we highlight the strong thermal/electrical symmetry between the parallel and series configurations and we compare our derivation with recent published results for the parallel configuration

    MEF2A regulates mGluR-dependent AMPA receptor trafficking independently of Arc/Arg3.1

    Get PDF
    © 2018 The Author(s). Differential trafficking of AMPA receptors (AMPARs) to and from the postsynaptic membrane is a key determinant of the strength of excitatory neurotransmission, and is thought to underlie learning and memory. The transcription factor MEF2 is a negative regulator of memory in vivo, in part by regulating trafficking of the AMPAR subunit GluA2, but the molecular mechanisms behind this have not been established. Here we show, via knockdown of endogenous MEF2A in primary neuronal culture, that MEF2A is specifically required for Group I metabotropic glutamate receptor (mGluR)-mediated GluA2 internalisation, but does not regulate AMPAR expression or trafficking under basal conditions. Furthermore, this process occurs independently of changes in expression of Arc/Arg3.1, a previously characterised MEF2 transcriptional target and mediator of mGluR-dependent long-term depression. These data demonstrate a novel MEF2A-dependent mechanism for the regulation of activity-dependent AMPAR trafficking
    corecore