133 research outputs found

    Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation.</p> <p>Methods</p> <p>UVB-irradiated p53<sup>+/- </sup>mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling.</p> <p>Results</p> <p>UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19<sup>+</sup>, CD5<sup>+</sup>, B220<sup>+</sup>, IgM<sup>+ </sup>and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression.</p> <p>Conclusion</p> <p>UV-irradiated p53<sup>+/- </sup>mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The induction of B cell lymphoma in UV-irradiated p53 heterozygous mice may provide a useful model for lymphoma development in humans.</p

    Second primary cancers among 109 000 cases of non-Hodgkin's lymphoma

    Get PDF
    An analysis of other primary cancers in individuals with non-Hodgkin's lymphoma (NHL) can help to elucidate this cancer aetiology. In all, 109 451 first primary NHL were included in a pooled analysis of 13 cancer registries. The observed numbers of second cancers were compared to the expected numbers derived from the age-, sex-, calendar period- and registry-specific incidence rates. We also calculated the standardised incidence ratios for NHL as a second primary after other cancers. There was a 47% (95% confidence interval 43–51%) overall increase in the risk of a primary cancer after NHL. A strongly significant (P<0.001) increase was observed for cancers of the lip, tongue, oropharynx*, stomach, small intestine, colon*, liver, nasal cavity*, lung, soft tissues*, skin melanoma*, nonmelanoma skin*, bladder*, kidney*, thyroid*, Hodgkin's lymphoma*, lymphoid leukaemia* and myeloid leukaemia. Non-Hodgkin's lymphoma as a second primary was increased after cancers marked with an asterisk. Patterns of risk indicate a treatment effect for lung, bladder, stomach, Hodgkin's lymphoma and myeloid leukaemia. Common risk factors may be involved for cancers of the lung, bladder, nasal cavity and for soft tissues, such as pesticides. Bidirectional effects for several cancer sites of potential viral origin argue strongly for a role for immune suppression in NHL

    GWAS of Follicular Lymphoma Reveals Allelic Heterogeneity at 6p21.32 and Suggests Shared Genetic Susceptibility with Diffuse Large B-cell Lymphoma

    Get PDF
    Non-Hodgkin lymphoma (NHL) represents a diverse group of hematological malignancies, of which follicular lymphoma (FL) is a prevalent subtype. A previous genome-wide association study has established a marker, rs10484561 in the human leukocyte antigen (HLA) class II region on 6p21.32 associated with increased FL risk. Here, in a three-stage genome-wide association study, starting with a genome-wide scan of 379 FL cases and 791 controls followed by validation in 1,049 cases and 5,790 controls, we identified a second independent FL–associated locus on 6p21.32, rs2647012 (ORcombined = 0.64, Pcombined = 2×10−21) located 962 bp away from rs10484561 (r2<0.1 in controls). After mutual adjustment, the associations at the two SNPs remained genome-wide significant (rs2647012:ORadjusted = 0.70, Padjusted = 4×10−12; rs10484561:ORadjusted = 1.64, Padjusted = 5×10−15). Haplotype and coalescence analyses indicated that rs2647012 arose on an evolutionarily distinct haplotype from that of rs10484561 and tags a novel allele with an opposite (protective) effect on FL risk. Moreover, in a follow-up analysis of the top 6 FL–associated SNPs in 4,449 cases of other NHL subtypes, rs10484561 was associated with risk of diffuse large B-cell lymphoma (ORcombined = 1.36, Pcombined = 1.4×10−7). Our results reveal the presence of allelic heterogeneity within the HLA class II region influencing FL susceptibility and indicate a possible shared genetic etiology with diffuse large B-cell lymphoma. These findings suggest that the HLA class II region plays a complex yet important role in NHL

    Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes

    Get PDF
    Aim: Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk. Methods: We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis. Results: We discovered positive associations between FROH and CLL (β = 21.1, SE = 4.41, P = 1.6 × 10-6) and FL (β = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (β = 27.5, SE = 6.51, P = 2.4 × 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity. Conclusion: Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk

    The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma

    Get PDF
    We are grateful to Paulo Vieira, Cecília Leão, Manuel T. Silva, Nuno Sousa, Jorge Correia- Pinto, Joana Palha, Margarida Correia-Neves, Margarida Lima and Matthew Berry for all their input throughout these studies and critical reading of the manuscript. We are grateful to the patients who joint this study as well as to all members of the Life and Health Sciences Research Institute and School of Health Sciences, University of Minho, who contributed in any way to the development of this workNon-Hodgkin lymphoma (NHL) has been associated with immunological defects, chronic inflammatory and autoimmune conditions. Given the link between immune dysfunction and NHL, genetic variants in toll-like receptors (TLRs) have been regarded as potential predictive factors of susceptibility to NHL. Adequate anti-tumoral responses are known to depend on TLR9 function, such that the use of its synthetic ligand is being targeted as a therapeutic strategy. We investigated the association between the functional rs5743836 polymorphism in the TLR9 promoter and risk for B-cell NHL and its major subtypes in three independent case-control association studies from Portugal (1160 controls, 797 patients), Italy (468 controls, 494 patients) and the US (972 controls, 868 patients). We found that the rs5743836 polymorphism was significantly overtransmitted in both Portuguese (odds ratio (OR), 1.85; P=7.3E-9) and Italian (OR, 1.84; P=6.0E-5) and not in the US cohort of NHL patients. Moreover, the increased transcriptional activity of TLR9 in mononuclear cells from patients harboring rs5743836 further supports a functional effect of this polymorphism on NHL susceptibility in a population-dependent manner.AC, NSO, MTC, and AJA were financially supported by a fellowship from Fundação para a Ciência e Tecnologia, Portugal. MS is a Ciência 2007 fellow. This study was supported by Fundação para a Ciência e Tecnologia, Portugal (PIC/IC/83313/2007) and by Fundação Calouste Gulbenkian, Serviço de Saúde e Desenvolvimento Humano, Portugal (Grant Number:Proc/60666-MM/734). CFS, PB and LC were supported by National Institutes of Health (NIH) grants CA122663 and CA104682, and PB also by NIH grants CA45614 and CA89745

    A genome-wide association study of marginal zone lymphoma shows association to the HLA region

    Get PDF
    Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent loci near BTNL2 (rs9461741, P=3.95 × 10−15) and HLA-B (rs2922994, P=2.43 × 10−9) in the HLA region significantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility complex influences MZL susceptibility

    Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology

    Get PDF
    The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies
    corecore