18 research outputs found
The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research
Anticipating implementation of colorectal cancer screening in The Netherlands: a nation wide survey on endoscopic supply and demand
<p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) screening requires sufficient endoscopic resources. The present study aims to determine the Dutch endoscopic production and manpower for 2009, evaluate trends since 2004, determine additional workload which would be caused by implementation of a CRC screening program, and inventory colonoscopy rates performed in other European countries.</p> <p>Methods</p> <p>All Dutch endoscopy units (N = 101) were surveyed for manpower and the numbers of endoscopy procedures performed in 2009. Based on calculations in the report issued by the Dutch Health Council, future additional workload caused by faecal immunochemical test (FIT) screening was estimated. The number of colonoscopies performed in Europe was evaluated by a literature search and an email-inquiry.</p> <p>Results</p> <p>Compared to 2004, there was a 24% increase in total endoscopies (N = 505,226 in 2009), and a 64% increase in colonoscopies (N = 191,339 in 2009) in The Netherlands. The number of endoscopists had increased by 4.6% (N = 583 in 2009). Five years after stepwise implementation of FIT-based CRC screening, endoscopic capacity needs to be increased an additional 15%. A lack of published data on the number of endoscopies performed in Europe was found. Based on our email-inquiry, the number of colonoscopies per 100,000 inhabitants ranged from 126 to 3,031 in 15 European countries.</p> <p>Conclusions</p> <p>Over the last years, endoscopic procedures increased markedly in The Netherlands without a corresponding increase in manpower. A FIT-based CRC screening program requires an estimated additional 15% increase in endoscopic procedures. It is very likely that current colonoscopy density varies widely across European countries.</p
Linking social capacities and risk communication in Europe: a gap between theory and practice?
Although both improved risk communication and the building of social capacities have been advocated as vital ways to increase societies’ resilience towards natural hazards across the world, the literature has rarely examined the ways in which these two concepts may integrate in theory and practice. This paper is an attempt to address this gap in a European context. It begins with a conceptual discussion that unites the literature on risk communication with the literature on social capacity building. We then use the insights from this discussion as a basis to conduct a review of 60 risk communication practices from across Europe. This review indicates a gap between theory and practice because, whilst the literature highlights the importance of integrated and coordinated communication campaigns featuring both a one-way transfer and a two-way dialogue between the public, stakeholders and decision-makers, the majority of the communication practices reviewed here appear to be relatively disparate initiatives that rely on one-way forms of communication. On the basis of these findings, we conclude by making some recommendations for the way in which such practices could be improved in order to be more supportive of social capacities across Europe
Protein tyrosine phosphatases: functional inferences from mouse models and human diseases.
Contains fulltext :
71343.pdf (publisher's version ) (Closed access)Some 40-odd genes in mammals encode phosphotyrosine-specific, 'classical' protein tyrosine phosphatases. The generation of animal model systems and the study of various human disease states have begun to elucidate the important and diverse roles of protein tyrosine phosphatases in cellular signalling pathways, development and disease. Here, we provide an overview of those findings from mice and men, and indicate several novel approaches that are now being exploited to further our knowledge of this fascinating enzyme family
Population-scale organization of cerebellar granule neuron signaling during a visuomotor behavior
Abstract Granule cells at the input layer of the cerebellum comprise over half the neurons in the human brain and are thought to be critical for learning. However, little is known about granule neuron signaling at the population scale during behavior. We used calcium imaging in awake zebrafish during optokinetic behavior to record transgenically identified granule neurons throughout a cerebellar population. A significant fraction of the population was responsive at any given time. In contrast to core precerebellar populations, granule neuron responses were relatively heterogeneous, with variation in the degree of rectification and the balance of positive versus negative changes in activity. Functional correlations were strongest for nearby cells, with weak spatial gradients in the degree of rectification and the average sign of response. These data open a new window upon cerebellar function and suggest granule layer signals represent elementary building blocks under-represented in core sensorimotor pathways, thereby enabling the construction of novel patterns of activity for learning