135 research outputs found

    The rhizotoxicity of metal cations is related to their strength of binding to hard ligands

    Get PDF
    Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al3+ and Hg2+, which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca2+, Na+, Mn2+, and Zn2+, which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl+, Ag+, Cs+, and Cu2+) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms

    Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma

    Get PDF
    Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.National Institutes of Health (U.S.) (U54 CA210180)MIT/Mayo Physical Sciences Center for Drug Distribution and Drug Efficacy in Brain TumorsDana-Farber Cancer Institute (PLGA Fund)Lundbeck FoundationNovo Nordisk Foundatio

    Differences in bioactivity between human insulin and insulin analogues approved for therapeutic use- compilation of reports from the past 20 years

    Get PDF
    In order to provide comprehensive information on the differences in bioactivity between human insulin and insulin analogues, published in vitro comparisons of human insulin and the rapid acting analogues insulin lispro (Humalog®), insulin aspart ( NovoRapid®), insulin glulisine (Apidra®), and the slow acting analogues insulin glargine (Lantus®), and insulin detemir (Levemir®) were gathered from the past 20 years (except for receptor binding studies). A total of 50 reports were retrieved, with great heterogeneity among study methodology. However, various differences in bioactivity compared to human insulin were obvious (e.g. differences in effects on metabolism, mitogenesis, apoptosis, intracellular signalling, thrombocyte function, protein degradation). Whether or not these differences have clinical bearings (and among which patient populations) remains to be determined

    RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito <it>Aedes aegypti </it>(Diptera, Culicidae), a vector of Dengue viruses, Yellow Fever Virus (YFV) and Chikungunya virus (CV), is the subject of this study to look at genome-wide changes in gene expression following a blood meal.</p> <p>Results</p> <p>Transcriptional changes that follow a blood meal in <it>Ae. aegypti </it>females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the <it>Ae. aegypti </it>reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. <it>Cis</it>-regulatory elements (CRE) and <it>cis</it>-regulatory modules (CRM) enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified.</p> <p>Conclusions</p> <p>This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in <it>Ae. aegypti </it>females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission-blocking strategies including those in which the vectors are modified genetically to express anti-pathogen effector molecules.</p

    A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus

    Get PDF
    Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease

    Endometrial cancer

    Get PDF
    Endometrial cancer is the most common gynecological malignancy in well-developed countries. Biologically and clinicopathologically, endometrial carcinomas are divided into two types: type 1 or estrogen-dependent carcinomas and type 2 or estrogen-independent carcinomas. Type 1 cancers correspond mainly to endometrioid carcinomas and account for approximately 90 % of endometrial cancers, whereas type 2 cancers correspond to the majority of the other histopathological subtypes. The vast majority of endometrial cancers present as abnormal vaginal bleedings in postmenopausal women. Therefore, 75 % of cancers are diagnosed at an early stage, which makes the overall prognosis favorable. The first diagnostic step to evaluate women with an abnormal vaginal bleeding is the measurement of the endometrial thickness with transvaginal ultrasound. If endometrial thickening or heterogeneity is confirmed, a biopsy should be performed to establish a definite histopathological diagnosis. Magnetic resonance imaging is not considered in the International Federation of Gynaecology and Obstetrics staging system. Nonetheless it plays a relevant role in the preoperative staging of endometrial carcinoma, helping to define the best therapeutic management. Moreover, it is important in the diagnosis of treatment complications, in the surveillance of therapy response, and in the assessment of recurrent disease.info:eu-repo/semantics/publishedVersio
    corecore