275 research outputs found
Spinning nanorods - active optical manipulation of semiconductor nanorods using polarised light
In this Letter we show how a single beam optical trap offers the means for
three-dimensional manipulation of semiconductor nanorods in solution.
Furthermore rotation of the direction of the electric field provides control
over the orientation of the nanorods, which is shown by polarisation analysis
of two photon induced fluorescence. Statistics over tens of trapped
agglomerates reveal a correlation between the measured degree of polarisation,
the trap stiffness and the intensity of the emitted light, confirming that we
are approaching the single particle limit.Comment: 7 pages, 4 figure
Biochar effects on methane emissions from soils: a meta-analysis
Methane (CH4) emissions have increased by more than 150% since 1750, with agriculture being the major source. Further increases are predicted as permafrost regions start thawing, and rice and ruminant animal production expand. Biochar is posited to increase crop productivity while mitigating climate change by sequestering carbon in soils and by influencing greenhouse gas fluxes. There is a growing understanding of biochar effects on carbon dioxide and nitrous oxide fluxes from soil. However, little is known regarding the effects on net methane exchange, with single studies often reporting contradictory results. Here we aim to reconcile the disparate effects of biochar application to soil in agricultural systems on CH4 fluxes into a single interpretive framework by quantitative meta-analysis.
This study shows that biochar has the potential to mitigate CH4 emissions from soils, particularly from flooded (i.e. paddy) fields (Hedge's d = −0.87) and/or acidic soils (Hedge's d = −1.56) where periods of flooding are part of the management regime. Conversely, addition of biochar to soils that do not have periods of flooding (Hedge's d = 0.65), in particular when neutral or alkaline (Hedge's d = 1.17 and 0.44, respectively), may have the potential to decrease the CH4 sink strength of those soils. Global methane fluxes are net positive as rice cultivation is a much larger source of CH4 than the sink contribution of upland soils. Therefore, this meta-study reveals that biochar use may have the potential to reduce atmospheric CH4 emissions from agricultural flooded soils on a global scale
Plant functional types and elevated CO2: A method of scanning for causes of community alteration
In this paper, a general method for an a posteriori plant functional type (PFT) analysis of global change effects on community composition is developed. We apply the method to a case study, specifically the Giessen-FACE experiment. This experiment involves a Central European meadow that has been exposed to moderate CO2-enrichment since May 1998.The method for an a posteriori PFT-analysis: The method consists of four working steps and uses a combination of standard gradient analysis and Random Forests (RF). (1) The trait composition of the species is studied using Principal Components Analysis. Species trait information is gathered from databases. Natural PFT, i.e. groups of species with similar trait-sets, are identified specifically for the community under study. (2) A ranking of the species according to standardized/absolute CO2 abundance response is obtained from Redundancy Analysis. Initially, species with a response above or below the median are grouped into three response groups (RG) each having similar behaviour, i.e. positive/negative or no-response. (3) The outlyingness measure of RF is used to shift RG boundaries until satisfactory RG homogeneity is achieved. RF is utilized to find the best traits for the RG classification. The behaviour of species representative of the RG is derived from RF class centers. (4) From knowledge gained in steps 1-3, hypotheses about the causes underlying the community alteration are built. Strengths/weaknesses of the method are discussed.Application of the method to the case study: The community consists of three natural PFT. Five species are summer-green forbs of varying competitiveness. Four species are evergreen ruderal forbs characterized as (semi-) basal rosette plants. The third natural PFT contains evergreen, more or less competitive species, mostly grasses, but also a few forbs.Negative standardized CO2-response was practically restricted to two natural PFT, i.e. the summer-greens, irrespective of their competitiveness, and the evergreen ruderals. Standard positive response covered part of the evergreen competitive natural PFT. Among them was Glechoma hederacea, one of the forbs with the greatest similarity to grasses. Two hypotheses were formulated to explain the response pattern: (1) Summer-greens lost in competition with evergreens, because the annual time-integral they can use for enhanced growth was more limited with year-round CO2-enrichment. (2) As rosette plants, ruderal evergreens lagged behind evergreen competitors because periods with full sunlight, which enabled them to gain additional carbon, were shorter for them.Absolute responses were additionally dependent on dominance patterns. The most striking difference to standard responses was the restriction of positive response to (sub-)dominant grasses
Recommended from our members
Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C
Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for delayed action towards phasing-out fossil fuels
Spontaneous symmetry breaking in a polariton and photon laser
We report on the simultaneous observation of spontaneous symmetry breaking
and long-range spatial coherence both in the strong and the weak-coupling
regime in a semiconductor microcavity. Under pulsed excitation, the formation
of a stochastic order parameter is observed in polariton and photon lasing
regimes. Single-shot measurements of the Stokes vector of the emission exhibit
the buildup of stochastic polarization. Below threshold, the polarization noise
does not exceed 10%, while above threshold we observe a total polarization of
up to 50% after each excitation pulse, while the polarization averaged over the
ensemble of pulses remains nearly zero. In both polariton and photon lasing
regimes, the stochastic polarization buildup is accompanied by the buildup of
spatial coherence. We find that the Landau criterion of spontaneous symmetry
breaking and Penrose-Onsager criterion of long-range order for Bose-Einstein
condensation are met in both polariton and photon lasing regimes.Comment: 5 pages, 3 figure
Possible Signatures of a Cold-Flow Disk from MUSE using a z=1 galaxy--quasar pair towards SDSSJ1422-0001
We use a background quasar to detect the presence of circum-galactic gas
around a low-mass star forming galaxy. Data from the new Multi Unit
Spectroscopic Explorer (MUSE) on the VLT show that the host galaxy has a
dust-corrected star-formation rate (SFR) of 4.70.2 Msun/yr, with no
companion down to 0.22 Msun/yr (5 ) within 240 kpc (30"). Using a
high-resolution spectrum (UVES) of the background quasar, which is fortuitously
aligned with the galaxy major axis (with an azimuth angle of only
), we find, in the gas kinematics traced by low-ionization lines,
distinct signatures consistent with those expected for a "cold flow disk"
extending at least 12 kpc (). We estimate the mass accretion
rate to be at least two to three times larger than the SFR,
using the geometric constraints from the IFU data and the HI column density of
obtained from a {\it HST}/COS NUV spectrum. From
a detailed analysis of the low-ionization lines (e.g. ZnII, CrII, TiII, MnII,
SiII), the accreting material appears to be enriched to about 0.4
(albeit with large uncertainties: ), which is
comparable to the galaxy metallicity (), implying a
large recycling fraction from past outflows. Blue-shifted MgII and FeII
absorptions in the galaxy spectrum from the MUSE data reveal the presence of an
outflow. The MgII and FeII doublet ratios indicate emission infilling due to
scattering processes, but the MUSE data do not show any signs of fluorescent
FeII* emission.Comment: 17 pages, 11 figures, in press (ApJ), minor edits after the proofs.
Data available at http://muse-vlt.eu/science/j1422
The Non-linear Optical Spin Hall Effect and Long-Range Spin Transport in Polariton Lasers
We report on the experimental observation of the non-linear analogue of the
optical spin Hall effect under highly non-resonant circularly polarized
excitation of an exciton polariton condensate in a GaAs/AlGaAs microcavity.
Initially circularly polarized polariton condensates propagate over macroscopic
distances while the collective condensate spins coherently precess around an
effective magnetic field in the sample plane performing up to four complete
revolutions
- …