8 research outputs found

    Scattering of bulk strain solitary waves in bi-layers with delamination

    Get PDF
    We study the scattering of longitudinal bulk strain solitary waves in delaminated bi-layers with different types of bonding. The direct numerical modelling of these problems is challenging and has natural limitations. We develop a semi-analytical approach, based on the use of several matched asymptotic multiple-scale expansions and the Integrability Theory of the Korteweg - de Vries equation by the Inverse Scattering Transform. We show that the semi-analytical approach agrees well with the direct numerical simulations and use it to study the scattering of different types of longitudinal bulk strain solitary waves in a wide range of bi-layers with delamination. In particular, we model the dynamics of a long longitudinal strain solitary wave in a symmetric perfectly bonded bi-layer with delamination. The numerical modelling confirms that delamination causes fission of an incident solitary wave and, thus, can be used to detect the defect. We then extend our approaches to the modelling of the waves in bi-layers with soft ("imperfect") bonding, described by a system of coupled Boussinesq equations and supporting radiating solitary waves. The results may help us to control the integrity of layered structures

    Modulational instability of two pairs of counter-propagating waves and energy exchange in two-component media

    Full text link
    The dynamics of two pairs of counter-propagating waves in two-component media is considered within the framework of two generally nonintegrable coupled Sine-Gordon equations. We consider the dynamics of weakly nonlinear wave packets, and using an asymptotic multiple-scales expansion we obtain a suite of evolution equations to describe energy exchange between the two components of the system. Depending on the wave packet length-scale vis-a-vis the wave amplitude scale, these evolution equations are either four non-dispersive and nonlinearly coupled envelope equations, or four non-locally coupled nonlinear Schroedinger equations. We also consider a set of fully coupled nonlinear Schroedinger equations, even though this system contains small dispersive terms which are strictly beyond the leading order of the asymptotic multiple-scales expansion method. Using both the theoretical predictions following from these asymptotic models and numerical simulations of the original unapproximated equations, we investigate the stability of plane-wave solutions, and show that they may be modulationally unstable. These instabilities can then lead to the formation of localized structures, and to a modification of the energy exchange between the components. When the system is close to being integrable, the time-evolution is distinguished by a remarkable almost periodic sequence of energy exchange scenarios, with spatial patterns alternating between approximately uniform wavetrains and localized structures.Comment: 35 pages, 13 figure

    On integrability of (2+1)-dimensional quasilinear systems

    Get PDF
    A (2+1)-dimensional quasilinear system is said to be `integrable' if it can be decoupled in infinitely many ways into a pair of compatible n-component one-dimensional systems in Riemann invariants. Exact solutions described by these reductions, known as nonlinear interactions of planar simple waves, can be viewed as natural dispersionless analogs of n-gap solutions. It is demonstrated that the requirement of the existence of 'sufficiently many' n-component reductions provides the effective classification criterion. As an example of this approach we classify integrable (2+1)-dimensional systems of conservation laws possessing a convex quadratic entropy.Comment: 23 page

    On a Class of Three-Dimensional Integrable Lagrangians

    No full text
    corecore