98 research outputs found

    Distribution of genetic diversity in wild European populations of prickly lettuce (Lactuca serriola): implications for plant genetic resources management

    Get PDF
    Genetic variation in Lactuca serriola, the closest wild relative of cultivated lettuce, was studied across Europe from the Czech Republic to the United Kingdom, using three molecular marker systems, simple sequence repeat (SSR, microsatellites), AFLP and nucleotide-binding site (NBS) profiling. The ‘functional’ marker system NBS profiling, targeting disease resistance genes of the NBS/LRR family, did not show marked differences in genetic diversity parameters to the other systems. The autogamy of the species resulted in low observed heterozygosity and high population differentiation. Intra-population variation ranged from complete homogeneity to nearly complete heterogeneity. The highest genetic diversity was found in central Europe. The SSR results were compared to SSR variation screened earlier in the lettuce collection of the Centre for Genetic Resources, the Netherlands (CGN). In the UK, practically only a single SSR genotype was found. This genotype together with a few other common SSR genotypes comprised a large part of the plants sampled on the continent. Among the ten most frequent SSR genotypes observed, eight were already present in the CGN collection. Overall, the CGN collection appears to already have a fair representation of genetic variation from NW Europe. The results are discussed in relation to sampling strategies for improving genebank collections of crop wild relatives

    Side effects of pesticides on terrestrial vertebrates

    Get PDF
    VakpublicatieInstitute of Environmental Science

    Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma

    Get PDF
    The ability to quantify synaptic function at the level of cortical microcircuits from non-invasive data would be enormously useful in the study of neuronal processing in humans and the pathophysiology that attends many neuropsychiatric disorders. Here, we provide proof of principle that one can estimate inter-and intra-laminar interactions among specific neuronal populations using induced gamma responses in the visual cortex of human subjects – using dynamic causal modelling based upon the canonical microcircuit (CMC; a simplistic model of a cortical column). Using variability in induced (spectral) responses over a large cohort of normal subjects, we find that the predominant determinants of gamma responses rest on recurrent and intrinsic connections between superficial pyramidal cells and inhibitory interneurons. Furthermore, variations in beta responses were mediated by inter-subject differences in the intrinsic connections between deep pyramidal cells and inhibitory interneurons. Interestingly, we also show that increasing the self-inhibition of superficial pyramidal cells suppresses the amplitude of gamma activity, while increasing its peak frequency. This systematic and nonlinear relationship was only disclosed by modelling the causes of induced responses. Crucially, we were able to validate this form of neurophysiological phenotyping by showing a selective effect of the GABA re-uptake inhibitor tiagabine on the rate constants of inhibitory interneurons. Remarkably, we were able to recover the pharmacodynamics of this effect over the course of several hours on a per subject basis. These findings speak to the possibility of measuring population specific synaptic function – and its response to pharmacological intervention – to provide subject-specific biomarkers of mesoscopic neuronal processes using non-invasive data. Finally, our results demonstrate that, using the CMC as a proxy, the synaptic mechanisms that underlie the gain control of neuronal message passing within and between different levels of cortical hierarchies may now be amenable to quantitative study using non-invasive (MEG) procedures

    ESAO: A holistic Ecosystem-Driven Analysis Model

    Get PDF
    The growing importance of software ecosystems and open innovation requires that companies become more intentional about aligning their internal strategy, architecture and organizing efforts with the ecosystem that the company is part of. Few models exist that facilitate analysis and improvement of this alignment. In this paper, we present the ESAO model and describe its six main components. Organizations and researchers can use the model to analyze the alignment between the different parts of their business, technologies and ways of working, internally and in the ecosystem. The model is illustrated and validated through the use of three case studies

    Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium

    Get PDF
    Our aims were to evaluate the distribution of troponin I concentrations in population cohorts across Europe, to characterize the association with cardiovascular outcomes, to determine the predictive value beyond the variables used in the ESC SCORE, to test a potentially clinically relevant cut-off value, and to evaluate the improved eligibility for statin therapy based on elevated troponin I concentrations retrospectively

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Early mobilisation versus plaster immobilisation of simple elbow dislocations: Results of the FuncSiE multicentre randomised clinical trial

    Get PDF
    Background/aim To compare outcome of early mobilisation and plaster immobilisation in patients with a simple elbow dislocation. We hypothesised that early mobilisation would result in earlier functional recovery. Methods From August 2009 to September 2012, 100 adult patients with a simple elbow dislocation were enrolled in this multicentre randomised controlled trial. Patients were randomised to early mobilisation (n=48) or 3 weeks plaster immobilisation (n=52). Primary outcome measure was the Quick Disabilities of the Arm, Shoulder, and Hand (Quick-DASH) score. Secondary outcomes were the Oxford Elbow Score, Mayo Elbow Performance Index, pain, range of motion, complications and activity resumption. Patients were followed for 1 year. Results Quick-DASH scores at 1 year were 4.0 (95% CI 0.9 to 7.1) points in the early mobilisation group versus 4.2 (95% CI 1.2 to 7.2) in the plaster immobilisation group. At 6 weeks, early mobilised patients reported less disability (Quick-DASH 12 (95% CI 9 to 15) points vs 19 (95% CI 16 to 22); p<0.05) and had a larger arc of flexion and extension (121° (95% CI 115° to 127°) vs 102° (95% CI 96° to 108°); p<0.05). Patients returned to work sooner after early mobilisation (10 vs 18 days; p=0.020). Complications occurred in 12 patients; this was unrelated to treatment. No recurrent dislocations occurred. Conclusions Early active mobilisation is a safe and effective treatment for simple elbow dislocations. Patients recovered faster and returned to work earlier without increasing the complication rate. No evidence was found supporting treatment benefit at 1 year

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore