201 research outputs found

    Dynamics of 2D pancake vortices in layered superconductors

    Full text link
    The dynamics of 2D pancake vortices in Josephson-coupled superconducting/normal - metal multilayers is considered within the time-dependent Ginzburg-Landau theory. For temperatures close to TcT_{c} a viscous drag force acting on a moving 2D vortex is shown to depend strongly on the conductivity of normal metal layers. For a tilted vortex line consisting of 2D vortices the equation of viscous motion in the presence of a transport current parallel to the layers is obtained. The specific structure of the vortex line core leads to a new dynamic behavior and to substantial deviations from the Bardeen-Stephen theory. The viscosity coefficient is found to depend essentially on the angle γ\gamma between the magnetic field B{\bf B} and the c{\bf c} axis normal to the layers. For field orientations close to the layers the nonlinear effects in the vortex motion appear even for slowly moving vortex lines (when the in-plane transport current is much smaller than the Ginzburg-Landau critical current). In this nonlinear regime the viscosity coefficient depends logarithmically on the vortex velocity VV.Comment: 15 pages, revtex, no figure

    Towards actionable international comparisons of health system performance: expert revision of the OECD framework and quality indicators

    Get PDF
    Objective To review and update the conceptual framework, indicator content and research priorities of the Organisation for Economic Cooperation and Development's (OECD) Health Care Quality Indicators (HCQI) project, after a decade of collaborative work. Design A structured assessment was carried out using a modified Delphi approach, followed by a consensus meeting, to assess the suite of HCQI for international comparisons, agree on revisions to the original framework and set priorities for research and development. Setting International group of countries participating to OECD projects. Participants Members of the OECD HCQI expert group. Results A reference matrix, based on a revised performance framework, was used to map and assess all seventy HCQI routinely calculated by the OECD expert group. A total of 21 indicators were agreed to be excluded, due to the following concerns: (i) relevance, (ii) international comparability, particularly where heterogeneous coding practices might induce bias, (iii) feasibility, when the number of countries able to report was limited and the added value did not justify sustained effort and (iv) actionability, for indicators that were unlikely to improve on the basis of targeted policy interventions. Conclusions The revised OECD framework for HCQI represents a new milestone of a long-standing international collaboration among a group of countries committed to building common ground for performance measurement. The expert group believes that the continuation of this work is paramount to provide decision makers with a validated toolbox to directly act on quality improvement strategie

    The Genetic Basis of Hepatosplenic T-cell Lymphoma

    Get PDF
    Hepatosplenic T cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy number alterations in the disease. Chromatin modifying genes including SETD2, INO80 and ARID1B were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%) for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS and TP53. SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates novel gene mutations linked to HSTL pathogenesis and potential treatment targets

    Chromosomal localization of 15 ion channel genes

    Full text link
    Several human Mendelian diseases, including the long-QT syndrome, malignant hyperthermia, and episodic ataxia/myokymia syndrome, have recently been demonstrated to be due to mutations in ion channel genes. Systematic mapping of ion channel genes may therefore reveal candidates for other heritable disorders. In this study, the GenBank and dbEST databases were used to identify members of several ion channel families (voltage-gated calcium and sodium cardiac chloride, and all classes of potassium channels). Genes and ESTs without prior map localization were identified based on GDB and OWL database information and 15 genes and ESTs were selected for mapping. Of these 15, only the serotonin receptor 5HT3R had been previously mapped to a chromosome. A somatic cell hybrid panel (SCH) was screened with an STS from each gene and, if necessary, the results verified by a second SCH panel. For three ESTs, rodent derived PCR products of the same size as the human STS precluded SCH mapping. For these three, human Pl clones were isolated and the genomic location was determined by metaphase FISH. These genes and ESTs can now be further evaluated as candidate genes for inherited cardiac, neuromuscular, and psychiatric disorders mapped to these chromosomes. Furthermore, the ESTs developed in this study can be used to isolate genomic clones, enabling the determination of each transcript's genomic structure and physical map location. This approach may also be applicable to other gene families and may aid in the identification of candidate genes for groups of related heritable disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45548/1/11188_2006_Article_BF02369898.pd

    Common variants at theCHEK2gene locus and risk of epithelial ovarian cancer

    Get PDF
    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.Other Research Uni

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model
    corecore