105 research outputs found

    Lactation biology

    Get PDF

    Mineralenvoeding tijdens de droogstand: het kation-anion verschil

    Get PDF
    Uit vooral buitenlands onderzoek blijkt dat een droogstandsrantsoen met een negatief kation- anionverschil (KAV) belangrijk is om melkziekte te voorkomen. Een negatief KAV kan bereikt worden door relatief lage gehalten aan kalium en natrium en hoge gehalten aan chloor en zwavel ionen in het rantsoen op te nemen

    Is there a special mechanism behind the changes in somatic cell and polymorphonuclear leukocyte counts, and composition of milk after a single prolonged milking interval in cows?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A single prolonged milking interval (PMI) e.g. after a technical stop in an automated milking system is of concern for the producer since it is associated with a short-lasting increase in milk somatic cell count (SCC), which is a major quality criterion used at the dairy plants. The content of polymorphonuclear leukocytes (PMN) and how the milk quality is influenced has not been much investigated. The SCC peak occurs without any obvious antigen challenge, possibly indicating a different leukocyte attraction mechanism after a PMI than we see during mastitis.</p> <p>Methods</p> <p>Composite cow milk samples were taken at the milkings twice daily during 7 days before and 5 days after a PMI of 24 h. Milk was analyzed for SCC, PMN, fat, protein and lactose, and at some occasions also casein and free fatty acids (FFA).</p> <p>Results</p> <p>During the PMI the proportion of milk PMN increased sharply in spite of marginally increased SCC. The peak SCC was not observed until the second milking after the PMI, in the afternoon day 1. However, the peak SCC value in <it>morning </it>milk did not occur until one day later, concomitantly with a <it>decrease </it>in the proportion of PMN. After declining, SCC still remained elevated while PMN proportion was decreased throughout the study as was also the milk yield, after the first accumulation of milk during the PMI. Milk composition was changed the day after the PMI, (increased fat and protein content; decreased lactose, whey protein and FFA content) but the changes in the following days were not consistent except for lactose that remained decreased the rest of the study.</p> <p>Conclusion</p> <p>The PMI resulted in increased SCC and proportion of PMN. Additionally, it gave rise to minor alterations in the milk composition in the following milkings but no adverse effect on milk quality was observed. The recruitment of PMN, which was further enhanced the first day <it>after </it>the PMI, appeared to be independent of milk volume or accumulation of milk per se. Hence, we suggest that there is a special immunophysiological/chemoattractant background to the increased migration of leukocytes into the milk compartment observed during and after the PMI.</p

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    Get PDF
    There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin

    The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth

    Get PDF
    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming

    Functional similarities between pigeon \u27milk\u27 and mammalian milk : induction of immune gene expression and modification of the microbiota

    Get PDF
    Pigeon &lsquo;milk&rsquo; and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon &lsquo;milk&rsquo;. Therefore, using a chicken model, we investigated the effect of pigeon &lsquo;milk&rsquo; on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon &lsquo;milk&rsquo; had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon &lsquo;milk&rsquo;-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon &lsquo;milk&rsquo;-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon &lsquo;milk&rsquo;, as well as being directly seeded by bacteria present in pigeon &lsquo;milk&rsquo;. Our results demonstrate that pigeon &lsquo;milk&rsquo; has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon &lsquo;lactation&rsquo; and mammalian lactation evolved independently but resulted in similarly functional products
    corecore