210 research outputs found

    The Great Leveraging in the GIIPS Countries: Domestic Credit and Net Foreign Liabilities

    Get PDF
    This paper analyses the relationship between domestic credit and foreign capital flows in the GIIPS countries during the Great Moderation before the global financial crisis. Cointegration analyses on the pre-crisis sample reveal that domestic credit and net foreign liabilities are cointegrated for Greece, Italy, Portugal and Spain, but not for Ireland. For the first four countries the long-run coefficient is in all cases around one, suggesting a close relationship between domestic leveraging and foreign capital inflows. Estimation of VECMs shows that the adjustment to deviations from the long-run relationship takes place through changes in domestic credit for Greece and Italy, while the adjustment is bidirectional for Spain and possibly also Portugal. These results suggest that “push” factors related to foreign capital inflows were important in the pre-crisis leveraging. The deleveraging after the crisis was largely unrelated to developments in foreign capital flows

    Uncovered Interest Parity in Central and Eastern Europe: Sample, Expectations and Structural Breaks

    Get PDF
    This paper examines the empirical validity of the hypothesis of uncovered interest parity (UIP) using data from five Central and Eastern European countries with floating exchange rates for the period 2003-2013. The analysis includes forward-looking as well as static expectations and also allows for different types of structural breaks. The variable representing deviations from UIP is stationary when expectations are forward-looking, but typically not when expectations are static even when structural breaks are incorporated. The results underscore the importance of the assumptions when the UIP hypothesis is tested

    ICES coordinated acoustic survey of ICES divisions IIIa, IVa, IVb AND Via (North) 2002 Results and long term trends

    Get PDF
    Six surveys were carried out during late June and July covering most of the continental shelf north of 54oN in the North Sea and to the west of Scotland to a northern limit of 62oN. The eastern edge of the survey area was bounded by the Norwegian and Danish, Swedish and German coasts, and to the west by the shelf edge between 200 and 400 m depth. The surveys are reported individually in the report of the planning group for herring surveys, and a combined report has been prepared from the data from all surveys. The combined survey results provide spatial distributions of herring abundance by number and biomass at age by statistical rectangle; and distributions of mean weight and fraction mature at age. The estimates of North Sea autumn spawning herring are consistent with previous years at 2.9 million tonnes and 17,200 million herring. The survey also shows two exceptional year classes of herring (the 1998 and 2000 year classes) in the North Sea, which is consistent with the observation of exceptionally large year classes observed in the MIK and IBTS surveys. The estimates of Western Baltic spring spawning herring SSB are 255,000 tonnes and 2.9 millions (Table 2) and show a large increase compared with the previous year. The Western Baltic survey produces a rather noisy signal but the indications are of a stock that is higher now than between 1996 to 2000. The West of Scotland survey estimates of 548,000 tonnes and 2,900 million and shows the high 1995 year class again this year. The 1998 year class now (3 ring) is also a large one. Total adult mortality shows much lower mortality than last year (0.1 compared to 0.5 ) but the mean mortality over the last 4 years has been 0.3: this is consistent with the 2002 assessment that the stock is lightly exploited. The overall time series of abundance by age from 1989 to 2002 are summarised by simple models describing the spatial distribution over time. The changes over time with latitude, longitude and area occupied are compared with changes in abundance

    ICES coordinated acoustic survey of ICES divisions IIIa, IVa, IVb AND Via (North) 2002 Results and long term trends

    Get PDF
    Six surveys were carried out during late June and July covering most of the continental shelf north of 54oN in the North Sea and to the west of Scotland to a northern limit of 62oN. The eastern edge of the survey area was bounded by the Norwegian and Danish, Swedish and German coasts, and to the west by the shelf edge between 200 and 400 m depth. The surveys are reported individually in the report of the planning group for herring surveys, and a combined report has been prepared from the data from all surveys. The combined survey results provide spatial distributions of herring abundance by number and biomass at age by statistical rectangle; and distributions of mean weight and fraction mature at age. The estimates of North Sea autumn spawning herring are consistent with previous years at 2.9 million tonnes and 17,200 million herring. The survey also shows two exceptional year classes of herring (the 1998 and 2000 year classes) in the North Sea, which is consistent with the observation of exceptionally large year classes observed in the MIK and IBTS surveys. The estimates of Western Baltic spring spawning herring SSB are 255,000 tonnes and 2.9 millions (Table 2) and show a large increase compared with the previous year. The Western Baltic survey produces a rather noisy signal but the indications are of a stock that is higher now than between 1996 to 2000. The West of Scotland survey estimates of 548,000 tonnes and 2,900 million and shows the high 1995 year class again this year. The 1998 year class now (3 ring) is also a large one. Total adult mortality shows much lower mortality than last year (0.1 compared to 0.5 ) but the mean mortality over the last 4 years has been 0.3: this is consistent with the 2002 assessment that the stock is lightly exploited. The overall time series of abundance by age from 1989 to 2002 are summarised by simple models describing the spatial distribution over time. The changes over time with latitude, longitude and area occupied are compared with changes in abundance

    Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters

    Get PDF
    While mapping algal blooms from space is now well-established, mapping undesirable algal blooms in eutrophicated coastal waters raises further challenge in detecting individual phytoplankton species. In this paper, an algorithm is developed and tested for detecting Phaeocystis globosa blooms in the Southern North Sea. For this purpose, we first measured the light absorption properties of two phytoplankton groups, P. globosa and diatoms, in laboratory-controlled experiments. The main spectral difference between both groups was observed at 467 nm due to the absorption of the pigment chlorophyll c3 only present in P. globosa, suggesting that the absorption at 467 nm can be used to detect this alga in the field. A Phaeocystis-detection algorithm is proposed to retrieve chlorophyll c3 using either total absorption or water-leaving reflectance field data. Application of this algorithm to absorption and reflectance data from Phaeocystis-dominated natural communities shows positive results. Comparison with pigment concentrations and cell counts suggests that the algorithm can flag the presence of P. globosa and provide quantitative information above a chlorophyll c3 threshold of 0.3 mg m−3 equivalent to a P. globosa cell density of 3 × 106 cells L−1. Finally, the possibility of extrapolating this information to remote sensing reflectance data in these turbid waters is evaluated

    Wind and trophic status explain within and among-lake variability of algal biomass

    Get PDF
    Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within-lake variation in biomass using high-frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high-frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within-lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high-frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides.Peer reviewe

    Detecting spatio-temporal mortality clusters of European countries by sex and ag

    Full text link
    [EN] Background: Mortality decreased in European Union (EU) countries during the last century. Despite these similar trends, there are still considerable differences in the levels of mortality between Eastern and Western European countries. Sub-group analysis of mortality in Europe for different age and sex groups is common, however to our knowledge a spatio-temporal methodology as in this study has not been applied to detect significant spatial dependence and interaction with time. Thus, the objective of this paper is to quantify the dynamics of mortality in Europe and detect significant clusters of mortality between European countries, applying spatio-temporal methodology. In addition, the joint evolution between the mortality of European countries and their neighbours over time was studied. Methods: The spatio-temporal methodology used in this study takes into account two factors: time and the geographical location of countries and, consequently, the neighbourhood relationships between them. This methodology was applied to 26 European countries for the period 1990-2012. Results: Principally, for people older than 64 years two significant clusters were obtained: one of high mortality formed by Eastern European countries and the other of low mortality composed of Western countries. In contrast, for ages below or equal to 64 years only the significant cluster of high mortality formed by Eastern European countries was observed. In addition, the joint evolution between the 26 European countries and their neighbours during the period 1990-2012 was confirmed. For this reason, it can be said that mortality in EU not only depends on differences in the health systems, which are a subject to national discretion, but also on supra-national developments. Conclusions: This paper proposes statistical tools which provide a clear framework for the successful implementation of development public policies to help the UE meet the challenge of rethinking its social model (Social Security and health care) and make it sustainable in the medium term.The authors are grateful for the financial support provided by the Ministry of Economy and Competitiveness, project MTM2013-45381-P. Adina Iftimi gratefully acknowledges financial support from the MECyD (Ministerio de Educacion, Cultura y Deporte, Spain) Grant FPU12/04531. Francisco Montes is grateful for the financial support provided by the Spanish Ministry of Economy and Competitiveness, project MTM2016-78917-R. The research by Patricia Carracedo and Ana Debon has been supported by a grant from the Mapfre Foundation.Carracedo-Garnateo, P.; Debón Aucejo, AM.; Iftimi, A.; Montes-Suay, F. (2018). Detecting spatio-temporal mortality clusters of European countries by sex and ag. International Journal for Equity in Health. 17:1-19. https://doi.org/10.1186/s12939-018-0750-zS11917Anderson TW, Goodman LA. Statistical Inference about Markov Chains. Ann Math Stat. 1957; 28(1):89–110.Anselin L. Local Indicators of Spatial Association–LISA. Geographical Anal. 1995; 27(2):93–115.Bilbao-Ubillos J. Is there still such a thing as the ‘European social model’?. Int J Soc Welf. 2016; 25:110–25.Bivand R. spdep: Spatial Dependence:Weighting Schemes, Statistics and Models. 2012. R package version 0.5-53. http://CRAN.R-project.org/package=spdep .Bivand R, Hauke J, Kossowski T. Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods. Geographical Anal. 2013; 45(2):150–79.Bivand R, Keitt T, Rowlingson B. rgdal: Bindings for the Geospatial Data Abstraction Library. 2016. R package version 1.1-10. https://CRAN.R-project.org/package=rgdal .Bivand R, Lewin-Koh N. maptools: Tools for Reading and Handling Spatial Objects. 2016. R package version 0.8-39 https://CRAN.R-project.org/package=maptools .Bonneux L, Huisman C. de Beer J. Mortality in 272 European regions, 2002-2004: an update. Eur J Epidemiol. 2010; 25(1):77–85. Reporting year: 2010.Charpentier A. Computational Actuarial Science with R. Chapman y Hall/CRC. 2014.Cliff AD, Ord JK. Spatial autocorrelation. London: Pion; 1973.Cutler D, Deaton A, Lleras-Muney A. The Determinants of Mortality. J Econ Perspect. 2006; 20(3):97–120.Debón A, Chaves L, Haberman S, Villa F. Characterization of between-group inequality of longevity in European Union countries. Insur Math Econ. 2017; 75:151–65.Fleiss J, Levin B, Paik M. Statistical Methods for Rates and Proportions: Wiley; 2013.Gordon M. Gmisc: Descriptive Statistics, Transition Plots, and More. 2016. R package version 1.3.1. https://CRAN.R-project.org/package=Gmisc .Hinde A. Demographic methods. Routledge: Routledge; 1998.Hyndman RJ, Booth H, Tickle L, Maindonald J. demography: Forecasting mortality, fertility, migration and population data. 2014. package version 1.18. https://CRAN.R-project.org/package=demography .Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). 2016. Available at www.mortality.org or www.humanmortality.de (data downloaded on 12th July 2016).Hatzopoulos P, Haberman S. Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insurance Math Econ. 2013; 52(2):320–37.Iftimi A, Montes F, Santiyán AM, Martínez-Ruiz F. Space–time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain Spatial Spatio-Temporal Epidemiol. 2015; 14:33–44.Julious S, Nicholl J, George S. Why do we continue to use standardized mortality ratios for small area comparisons?. J Public Health. 2001; 23(1):40–6.Laurent T, Ruiz-Gazen A, Thomas-Agnan C. GeoXp: An R package for exploratory spatial data analysis. J Stat Softw. 2012; 47(2):1–23.Leon DA. Trends in European life expectancy: a salutary view. Int J Epidemiol. 2011; 40:271–7.Li H, Li L, Wu B, Xiong Y. The End of Cheap Chinese Labor. J Econ Perspect. 2013; 26(4):57–74.Mackenbach JP, Karanikolos M, McKee M. The unequal health of Europeans: successes and failures of policies. The Lancet. 2013; 381(9872):1125–34.Meslé F. Mortality in Central and Eastern Europe: Long-term trends and recent upturns. Demographic Res. 2004; 2:45–70.Meslé F, Vallin J. Mortality in Europe: The divergence between East and West. Population (English Edition). 2002; 57(1):157–97.Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950; 37(1-2):17–23.Moran PAP. A Test for the Serial Independence of Residuals. Biometrika. 1950; 37(1/2):178–81.Neuwirth E. RColorBrewer: ColorBrewer Palettes. R package version. 2014; 1:1–2. https://CRAN.R-project.org/package=RColorBrewer .Oleckno WA. Epidemiology: concepts and methods: Waveland Press, Inc.; 2008.Quah D. Galton’s Fallacy and Tests of the Convergence Hypothesis. Scand J Econ. 1993; 95(4):427–43.R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. 2015. https://www.R-project.org/ .Rey S. In: Fischer MM, Nijkamp P, (eds).Spatial Dynamics and Space-Time Data Analysis. Berlin, Heidelberg: Springer: Handbook of Regional Science; 2014, pp. 1365–83.Rey SJ. Spatial Empirics for Economic Growth and Convergence. Geogr Anal. 2001; 33(3):195–214.Riffe T. Reading Human Fertility Database and Human Mortality Database data into R. Technical Report TR-2015-004, MPIDR. 2015.Schofield R, Reher D, Bideau A. The Decline of Mortality in Europe. International studies in demography. Oxford: Clarendon Press; 1991.Shaw M, Orford S, Brimblecombe N, Dorling D. Widening inequality in mortality between 160 regions of 15 European countries in the early 1990s. Soc Sci Med. 2000; 50(7-8):1047–58.Spinakis A, Anastasiou G, Panousis V, Spiliopoulos K, Palaiologou S, Yfantopoulos J. Expert Review and Proposals for Measurement of Health Inequalities in the European Union. European Commission. Technical report,Luxembourg: European Commission Directorate General for Health and Consumers; 2011. http://ec.europa.eu/health/social_determinants/docs/full_quantos_en.pdf .Staehr K. Economic transition in Estonia. Background, reforms and results In: Rindzeviciute E, editor. Contemporary Change in Estonia. Baltic and East European Studies. Sodertorns hogskola: Baltic and East European Studies: 2004. p. 437–67.Trnka L, Dankova D, Zitova J, Cimprichova L, Migliori GB, Clancy L, Zellweger J. Survey of BCG vaccination policy in Europe: 1994-96. Bull World Health Organ. 1998; 76(1):85–91.United Nations Inter–agency Group for Child Mortality Estimation. Levels & Trends in Child Mortality: Report 2013. New York: Technical report, United Nations Children’s Fund; 2013. Avaliable at www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2013.pdf Accessed 27 Oct 2016.Vågerö D. The east–west health divide in Europe: Growing and shifting eastwards. Eur Rev. 2010; 18(01):23–34.Vaupel JW, Zhang Z, van Raalte AA, Vaupel JW, Zhang Z, van Raalte AA. Life expectancy and disparity: an international comparison of life table data. BMJ Open. 2011; 1:e000128.Wickham H, Chang W. devtools: Tools to Make Developing R Packages Easier. R package version 1.11.1. 2016. https://CRAN.R-project.org/package=devtools .Wilcox R. Introduction to robust estimation and hypothesis testing, 3rd Edition.San Diego: Academic Press; 2012

    Hepatic steatosis does not cause insulin resistance in people with familial hypobetalipoproteinaemia

    Get PDF
    Item does not contain fulltextAIMS/HYPOTHESIS: Hepatic steatosis is strongly associated with hepatic and whole-body insulin resistance. It has proved difficult to determine whether hepatic steatosis itself is a direct cause of insulin resistance. In patients with familial hypobetalipoproteinaemia (FHBL), hepatic steatosis is a direct consequence of impaired hepatic VLDL excretion, independently of metabolic derangements. Thus, patients with FHBL provide a unique opportunity to investigate the relation between increased liver fat and insulin sensitivity. METHODS: We included seven male participants with FHBL and seven healthy matched controls. Intrahepatic triacylglycerol content and intramyocellular lipid content were measured using localised proton magnetic resonance spectroscopy ((1)H-MRS). A two-step hyperinsulinaemic-euglycaemic clamp, using stable isotopes, was assessed to determine hepatic and peripheral insulin sensitivity. RESULTS: (1)H-MRS showed moderate to severe hepatic steatosis in patients with FHBL. Basal endogenous glucose production (EGP) and glucose levels did not differ between the two groups, whereas insulin levels tended to be higher in patients compared with controls. Insulin-mediated suppression of EGP during lower dose insulin infusion and insulin-mediated peripheral glucose uptake during higher dose insulin infusion were comparable between FHBL participants and controls. Baseline fatty acids and lipolysis (glycerol turnover) at baseline and during the clamp did not differ between groups. CONCLUSIONS/INTERPRETATION: In spite of moderate to severe hepatic steatosis, people with FHBL do not display a reduction in hepatic or peripheral insulin sensitivity compared with healthy matched controls. These results indicate that hepatic steatosis per se is not a causal factor leading to insulin resistance. TRIAL REGISTRATION: ISRCTN35161775
    corecore