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Scientific Significance Statement

Mean phytoplankton biomass and production in lakes are known to be strongly related to nutrients, light, weather, water col-
umn mixing, and grazing. However, much less is known about the factors that are related to variation in phytoplankton biomass
and production, particularly at the scale of hours, days, and months, due in part to the labor-intensive nature of phytoplankton
sampling. We used high-frequency monitoring of chlorophyll fluorescence in 18 lakes across the world to address this important
knowledge gap. We found that among lakes, phytoplankton biomass variation increased as trophic status increased; whereas,
within lakes, phytoplankton biomass variation increased as variation in wind speed increased. Studies focusing on predicting
change in phytoplankton biomass will need to incorporate these key variables and consider the scales at which they operate.
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Abstract
Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and
subsequent predictability is poorly understood. We estimated within-lake variation in biomass using high-
frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluores-
cence at monthly, daily, and hourly scales was related to high-frequency variability of wind, water temperature,
and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly
variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly.
Among lakes, biomass variability increased with trophic status while, within-lake biomass variation increased
with increasing variability in wind speed. Our results highlight the benefits of high-frequency chlorophyll mon-
itoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication,
are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the ser-
vices it provides.

Phytoplankton (~ planktonic algae) form the base of most
aquatic food webs and their abundance and dynamics regulate
the services aquatic ecosystems provide (Platt et al. 2003; Qin
et al. 2010). Because variation in the provisioning of ecosys-
tem services can complicate management efforts (Carpenter
et al. 2015), the ability to reliably predict changes in these ser-
vices depends on understanding the environmental controls
of algae and how algal variability is expressed in space and
time (Cottingham et al. 2000; Fraterrigo and Rusak 2008).
Algae respond to a range of habitat fluctuations including
temperature, light, nutrients, water column mixing, and her-
bivory (Reynolds 2006). Consequently, the ongoing planetary
shifts in surface-water temperature (O’Reilly et al. 2015), ther-
mal stratification (Adrian et al. 2009), solar dimming and
brightening (Wild 2012), nutrient availability (Smith 2003),
wind speeds (Vautard et al. 2010), and food webs (Cross
et al. 2015) and their interactions will likely have dramatic
consequences for variation in the production of algal biomass
as well as the services that are derived from this vital resource.

Apart from general relationships over broad spatial gradi-
ents (Dillon and Rigler 1974), predicting how algal biomass
responds to changes in environmental drivers has proven
exceedingly difficult (Kara et al. 2012; Winder and Sommer
2012). We can often accurately model the physical and chem-
ical dynamics of lakes (Mooij et al. 2010), but algal communi-
ties can be variable and unpredictable from one lake to
another or even within an individual lake over time
(Litchman 1998; Winder and Cloern 2010), although high-
frequency data has recently shown promise in predicting
mean phytoplankton abundance at submonthly frequencies
(Thomas et al. 2018). More fundamentally, relatively little is
known of how variation in algal biomass itself is apportioned
within and among systems, particularly at fine temporal scales
(e.g., hours to days). This uncertainty hinders our ability to
manage aquatic ecosystems, particularly in an increasingly
complex world with multiple interacting stressors (Benincá
et al. 2008; Jackson et al. 2016).

Attempts to quantify variability per se in algal biomass have
revealed that most spatial and temporal variation remains dif-
ficult to characterize. For example, Cloern and Jassby (2010)
quantified variability within and among coastal and estuarine
systems sampled at monthly intervals using traditional spec-
trophotometric determinations of extracted chlorophyll
a (Chl a). They partitioned variance at monthly and annual
timescales and found that variation occurred somewhat
equally at seasonal (monthly) and annual scales across sites.
However, the largest fraction of the variation was unexplained
by month or year and occurred at time periods shorter than
their monthly sampling frequency. Although seasonal pat-
terns in mean biomass are common in many lakes (Sommer
et al. 2012), the variation around this seasonality is poorly
characterized (Cloern and Jassby 2010; Winder and Cloern
2010). In support, Istvànovics et al. (2005) estimated the char-
acteristic period of algal biomass in Lake Balaton to be on the
order of 5–7 d which necessitates a sampling frequency of
2–3 d to adequately capture algal dynamics.

Traditional estimates of chlorophyll concentrations are
labor-intensive and typically conducted at weekly to monthly
frequencies. Recent advances in high-frequency monitoring of
chlorophyll fluorescence (chlF) provide a proxy for algal bio-
mass (Baker 2008; Brentrup et al. 2016), and although subject
to some methodological constraints (Serra et al. 2009), have
made it possible to investigate algal variability at temporal
scales that were previously inaccessible (i.e., minutes to
hours). Similarly, many limnological events with the potential
to influence algal biomass are temporally dynamic and are
only captured by high-frequency monitoring efforts. For
example, thermal stratification events with a duration of < 1 d
represented 80% of all stratified periods within a polymictic
lake (Wilhelm and Adrian 2008) and the range in day to night
surface-water temperature has been found to vary dramatically
among lakes of differing size (Woolway et al. 2016).

To better understand the patterns of variability at higher
frequencies, we analyzed nearly 100,000 measurements of
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chlF from 18 freshwater lakes and reservoirs around the globe
to (1) quantify how variation in algal biomass is apportioned
at hourly, daily, and monthly scales across our study lakes
using a hierarchical Bayesian framework, and (2) identify pre-
dictors of this variation. These predictors (Table 1) fell into
two major categories: (1) among-lake descriptors of lake mor-
phometry, productivity, and transparency, and (2) within-lake
high-frequency data for local meteorological and limnological
drivers (wind speed, solar radiation, and water temperature).
Among lakes, we hypothesized a positive correlation between
variability in algal biomass and productivity because nutrient
enrichment has previously been shown to increase the vari-
ability of algal biomass in whole-lake experiments
(Cottingham et al. 2000). Within lakes, we tested whether
hourly, daily, and monthly variation in algal biomass posi-
tively covaried with variation in high-frequency measure-
ments of wind speed (Carrick et al. 1993), surface-water
temperature (Robarts and Zohary 1987), and photosyntheti-
cally active radiation (PAR) (Slegers et al. 2011). Covariation
with locally measured physical variables indicates pathways
by which environmental change may alter the variability of
algal dynamics.

Our results demonstrated that increasing trophic status
among lakes, and variation in wind speed within a lake, were
significant positive correlates of variation in algal biomass.
These findings suggest that increasing variability in wind,
potentially driven by increases in extreme storm events
(Knutson and Tuleya 2004; Meehl et al. 2005), and nutrient
inputs (Carpenter et al. 2008; Schindler 2012) have the poten-
tial to increase variability in algal biomass and thereby reduce
predictability in the delivery of associated aquatic ecosystem
services.

Methods
Study sites

We used data from 18 lakes (Supporting Information
Fig. S1) encompassing broad gradients of physical and biologi-
cal characteristics including area, depth, residence time, Chl a,
water clarity, and mixing regime (Supporting Information
Table S1). A total of 3834 lake-days from 18 lakes were used;
the number of days from each lake ranged from 96 to 363 with
a mean � standard error of 213 � 21 d. For each lake, chlF
was sampled during the growing season from 1 yr during the
period 2008–2013. All data were from lakes in the Global
Lakes Ecological Observatory Network (GLEON; http://
gleon.org).

Data collection and postprocessing
High-frequency hourly time series measurements (Winslow

et al. 2017) of chlF (following excitation of algal cells with
light of ~ 470 nm), wind speed, water temperature, and PAR
were collected by automated observation platforms on each
lake for a minimum of 4 months during the ice-free season.

For some sites, short-wave radiation was measured and con-
verted to PAR (Papaioannou et al. 1993). Fluorescence sensors
were deployed at approximately 1 m depth to measure typical
conditions in the surface mixed layer. For temperature, we
used sensor data measured closest to a depth of 1 m. Accurate
determination of mixing depths was not possible for all lakes
because of differences in sensor distribution. We therefore cal-
culated the difference between surface temperatures and the
temperature at a depth of approximately one-tenth of the
maximum depth in each lake as a measure of water column
stability. The constant percent depth increment allowed us to
standardize this measure across lakes of differing depths
(Supporting Information Table S1). High-frequency data were
quality checked and interpolated where possible. We interpo-
lated these datasets to fill in short periods of missing data
(no longer than one-tenth of a day) using the spline interpola-
tion method from MATLAB (v2011a). All lakes were down-
sampled to a 1 h sampling interval by averaging all samples
during each previous hour to facilitate comparisons of model
fits across lakes. Because we wished to examine variation in

Table 1. Median correlation coefficients between among and
within-lake attributes and chlF VCs at hourly, daily, and monthly
timescales (in columns 2–4). Within lakes, we calculated VCs at
hourly, daily, and monthly scales for wind speed (“Wind”), water
temperature (“Temp”), and PAR. We only calculated correlations
between these VCs and chlF at matching (or more temporally
aggregated) explanatory variable timescales, thus eliminating
unrealistic relationships. Bolded values have 95% CIs that exclude
zero. Latitude and longitude were included to test whether
geography influenced any of the documented relationships.

Attribute Hour VC Day VC Month VC

AMONG LAKES
Latitude −0.45 −0.35 −0.22
Longitude 0.23 0.04 −0.06
Lake area −0.19 0.12 0.33
Max depth 0.22 −0.33 −0.17
Mean depth 0.37 −0.15 0.02
Residence time 0.11 −0.27 −0.20
Trophic Status 0.18 0.57 0.51
Water clarity −0.38 0.10 0.19
WITHIN LAKES
Wind hour VC 0.48 0.50 0.69
Wind day VC 0.42 0.75
Wind month VC 0.57
Temp hour VC −0.36 0.03 −0.12
Temp day VC 0.01 −0.34
Temp month VC 0.44
PAR hour VC −0.15 0.22 0.10
PAR day VC 0.15 0.12
PAR month VC 0.55
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absolute concentrations of chlF and some datasets were col-
lected as relative fluorescence units instead of μg L−1, we stan-
dardized hourly values in all lakes by multiplying hourly chlF
by a lake-specific scaling factor (the ratio of extracted mean
annual Chl a to mean of chlF values [see Supporting Informa-
tion Table S1]).

Lake characteristics including lake area, latitude, longitude,
mean and maximum depth, mean Chl a, and the diffuse
attenuation coefficient (Kd) were measured or estimated from
related variables during the period of high-frequency data col-
lection (Supporting Information Table S1). We used tradi-
tional extracted mean annual Chl a data (measured by
spectrophotometry, fluorometry, or high-performance liquid
chromatography), as our proxy of lake trophic status (sensu
Carlson 1977 who chose algal biomass, represented as Chl a,
as the basis for his trophic state index). Kd was derived from
the log-linear portion of PAR irradiance vs. depth data, or,
when clarity was not measured directly, it was estimated by a
model incorporating dissolved organic carbon and Chl
a (Morris et al. 1995) or from a modeled conversion of Secchi
depth (Kirk 1994). All non-normal data were natural
logarithm-transformed prior to analysis.

Statistical approach
Using a single hierarchical model, we partitioned the varia-

tion in chlF associated with hourly, daily, and monthly time-
scales in each lake simultaneously and tested whether these
values were associated with similarly calculated variance com-
ponents (VCs) for our other high-frequency measurements
(surface-water temperature, wind speeds, and PAR) and lake-
level attributes (latitude, longitude, area, depth, clarity, resi-
dence time, trophic status, and the means of wind speed, sur-
face temperature, and PAR) commonly thought to influence
algal biomass. Our approach was thus analogous to the vari-
ance partitioning undertaken by Cloern and Jassby (2010),
but had the advantages of incorporating all levels of temporal
variation in a single analysis and being able to quantify the
uncertainty associated with our VCs.

Briefly, we assumed that the m-dimensional vector X of
VCs at each temporal scale for each of the four high-
frequency responses, along with the observed values of the
12 lake-level attributes, could be described in each lake by a
multivariate normal distribution X ~ N(μ, Σ). Because the VCs
were only partially observed, they were treated as latent vari-
ables that were constrained by observed high-frequency data
and sampled from a log-normal multivariate hyper-prior dis-
tribution that placed relatively uninformative priors on each
hyper-parameter. μ was a vector of mean values across lakes
for each parameter and Σ was an estimated covariance matrix.
As Σ could ultimately be decomposed into a product of a vec-
tor of the standard deviations of each of the m parameters
and a matrix of their pairwise median correlation coefficients,
we were able to test directly the associations among our focal
parameters. Although all m−1 combinations of correlations

were estimated, we only examined those between explanatory
variables and chlF where the timescales of the VCs matched
or were more aggregated for chlorophyll (i.e., variability in
daily wind might influence variability in daily or monthly
algal biomass but is unlikely to affect hourly chlorophyll). All
model fitting was performed with a Bayesian framework, so
we subsequently report mean and 95% credible intervals (CIs)
from the posterior distributions of VCs and correlation coeffi-
cients. We also summarized model fit by calculating a Bayes-
ian R2 at the level of our observed data (analogous to
frequentist linear regression—Gelman and Pardoe 2006). Full
model details are given in Supporting Information. R code (R
Development Core Team, 2015) for the model is provided as
Supporting Information.

Results
ChlF modeling results fit the data well across lakes with a

mean Bayesian R2 (95% CI) of 0.96 (0.96–0.96) (Supporting
Information Fig. S2). The estimated variances for hour, day,
and month in each lake covaried with each other, with mean
correlations ranging between 0.54 and 0.70, all with 95% CIs
that excluded zero. There were no correlations between the
width of CIs for our model parameters and the length of the
individual lake time series, emphasizing that variation in
monitoring duration among lakes did not confound our ana-
lyses (mean correlation coefficient between duration and CI
estimates for hour, day, and month: r = 0.01, 0.03, and 0.24,
respectively; for all, 95% CIs overlapped zero).

Most of the variation in chlF across the dataset was
explained at the monthly rather than hourly or daily timescale.
Across lakes, a mean of between 22% and 64% of the total vari-
ance could be explained by month, and monthly variation sig-
nificantly exceeded that of either daily or hourly scales in 14 of
the 18 study lakes (Fig. 1), as measured by differences in
95% CIs among estimates that were positive and nonoverlap-
ping zero. In the remaining four lakes, there were no differ-
ences between monthly and either hourly or daily variation,
though hourly and daily variation did differ from each other in
three of these lakes (Harp, Lillinonah, and Vedsted in Fig. 1).

Significant environmental correlates of among and within-
lake variation in chlF were surprisingly few (Table 1). Within
lakes, variation in wind speed (Supporting Information
Fig. S3) was positively correlated with variation in chlF at all
temporal scales (Fig. 2; Table 1). Monthly variance in PAR
(Supporting Information Fig. S4) was also significantly corre-
lated with monthly chlF VCs (Fig. 3), but no relationships
between chlF VCs and water temperature (Supporting Infor-
mation Fig. S5) were evident at any temporal scale examined.
Among lakes, we found support for our a priori among-lake pre-
diction of positive covariation in daily and monthly chlF vari-
ability and lake trophic status (Fig. 4). We also noted, both here
and in Fig. 1, that monthly chlF variation increased up to a
potential threshold around 10–20 μg L−1 before reaching an
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asymptote and decreasing slightly. Finally, absolute latitude
was negatively correlated with hourly chlF VCs (Table 1). This
correlation was potentially spurious and unlikely to be indica-
tive of any causal pattern as absolute latitude was also strongly
negatively correlated with hourly wind speed VCs (mean corre-
lation = −0.50, 95% CI = −0.76 to −0.09).

Discussion
The unprecedented collection of high-frequency data used

for this study enabled us to examine unexplored temporal

patterns of variation in chlF, a widely used proxy for algal bio-
mass. Overall, our results explained substantially more varia-
tion in chlorophyll dynamics than analyses of lower
resolution traditional measures of algal biomass have provided
(Cloern and Jassby 2010; Winder and Cloern 2010), suggest-
ing that high-frequency sensor-based monitoring can greatly
increase our understanding of the variability and controls of
algal communities. Like these previous studies, we have iden-
tified a dominance of monthly variation in algal biomass. This
finding is unsurprising given the strong seasonality inherent
in phytoplankton dynamics observed in most temperate lakes

Fig. 1. Variance components on a standard deviation scale derived from fitting a Bayesian hierarchical model to the chlF data from 18 lakes (Supporting
Information Fig. S1 and Table S1), accounting for hourly (light green shading), daily (intermediate green shading), and monthly (dark green shading)
variation. VCs are median estimates and error bars are � 95% CIs. Bolded sites have greater monthly variation than at either daily and/or hourly scales.
Lakes are sorted in increasing trophic status from left to right and monthly VCs appear to reach maximum values in lakes with mean algal biomass values
of approximately 10–20 μg L−1 (also see Table 1).
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Fig. 2. Variance in chlF at hourly (top row—light green shading), daily (middle row—intermediate green shading), and monthly (bottom row—dark
green shading) timescales increases with variance in wind speed (a–f) within 18 lakes. Symbols are median estimates of VCs � 95% CIs. All relationships
are statistically significant (Table 1).
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and is supported statistically by the correlation between
monthly PAR VCs and monthly chlF variance (Fig. 3). How-
ever, because of our ability to quantify dynamics at shorter
timescales with high-frequency sensors, we found monthly
variation to be essentially equivalent to variation in biomass
at daily and hourly scales combined (Fig. 1). Thus, on an
annual time-frame, a large fraction of the total variation in
algal biomass occurs at scales shorter than those typically sam-
pled by most long-term monitoring programs used for lake
management, suggesting that such monitoring programs may
benefit from the incorporation of automated sensors as part of
their monitoring plans.

We found variation in wind speed to be a major correlate
of variability in phytoplankton abundance at all temporal
scales (Fig. 2). Sustained or high winds can erode density gra-
dients and deepen mixing, thereby altering the distribution of
nutrients at longer timescales to generate variation in phyto-
plankton abundance (Carrick et al. 1993; Gai et al. 2012).
High and variable wind speeds over the course of a day can
facilitate deep and complex mixing and circulation patterns
that drive three-dimensional heterogeneity in algal biomass
and transport different patches, with potentially different
photosynthetic capacities (Litchman 1998; Wagner
et al. 2006; Lavaud et al. 2007) past measurement locations
(George and Heaney 1978; Oliver et al. 2003). As wind speeds
change at different temporal scales, the mixing dynamics
(both horizontally and vertically) can respond based on basin
size, the strength of stratification, and the relative magnitude
of wind events (Spigel and Imberger 1980), but our results
suggest that the latter mechanism appears to be most impor-
tant to variability. In support of wind-induced mixing dynam-
ics as a probable mechanism, the chlF VCs were also
negatively correlated with a simple proxy of water column sta-
bility in our study lakes, i.e., higher variance in chlorophyll
occurred under less stable conditions (Supporting Information
Table S2). Convective mixing can also be an important mech-
anism for generating epilimnetic mixing (Fee et al. 1996), but

because its extent covaries with lake area (Read et al. 2012)
and lake area was not correlated with any chlorophyll VCs,
winds effects would appear to dominate in determining vari-
ance in chlF.

A number of physical, chemical, and biological phenom-
ena in lakes may be responsible for some of the scatter in the
relationships between chlF VCs and both wind speed VCs and
trophic status. Short-term chlF measurements in surface
waters are responsive to changes induced by irradiance and
fluorescence emitted per unit chlorophyll in addition to
changes in actual biomass (Marra 1997). Nonphotochemical
quenching (NPQ) occurs when algal fluorescence is suppressed
in the presence of excess light as cells shunt energy into heat
rather than photochemistry or fluorescence (Marra 1997) and
can complicate the estimation of algal biomass from fluores-
cence data (Serra et al. 2009; Huot and Babin 2010). Factors
such as the rate and depth of mixing and the amount of light
will control the likelihood and extent of NPQ (Serra
et al. 2009). In support, only monthly PAR was significantly
related to monthly chlF VCs, highlighting the absence of con-
sistent relationships between variability in light and chlF
beyond seasonal change. Other factors, such as variability in
herbivory or nutrient concentration, are likely to affect vari-
ability in algal biomass (Reynolds 2006) but are rarely sampled
at the high-frequency timescales necessary for our analysis.
Lags between predictor and response variables as well as inter-
actions among lake attributes may also contribute to the

Fig. 3. Variance in chlF at monthly timescales increases with variance in
PAR within 18 lakes. Symbols are median estimates of VCs � 95% CIs.

(a)

(b)

Fig. 4. Variance in chlF at daily (a—intermediate green shading) and
monthly (b—dark green shading) timescales increases with the natural
logarithm of mean annual Chl a (trophic status) among 18 lakes. Symbols
for chlF are median estimates of VCs � 95% CIs.

Rusak et al. Variability of phytoplankton biomass

414



scatter observed in our relationships among lakes. While such
linkages have the potential to be important in generating
changes in algal dynamics (e.g., Katz et al. 2015), we have
restricted our initial analyses to assessing patterns of variation
in algal time series at lag = 0 and note that lagged responses
represent a profitable area for future research.

The consistency of the relationships between fluorescence
VCs and the variance of wind speed highlights the unique
nature of wind as a major driver of within-lake variation in
algal biomass and chlF. Because hourly, daily, and monthly
variation in wind speed may not necessarily covary with
mean wind speed, we also examined the relationship between
mean wind speed and chlorophyll VCs among lakes
(Supporting Information Table S2). A significant positive rela-
tionship at a monthly scale was found indicating that changes
in the seasonal variability of wind speed may also be related
to wind speed magnitude. Globally, most lakes are located at
mid-latitude (Downing et al. 2006) where there has been a
particularly strong general decline in mean wind speeds
(McVicar et al. 2012; Woolway et al. 2017). However, extreme
wind events associated with tropical cyclones and a poleward
shift in extratropical storm tracks are predicted to increase
concurrent with global climate change over the 21st century
(Karl 2009; IPCC 2012). Both phenomena combined
(i.e., lower overall wind speeds coupled with more frequent
high-wind speed storm events) have the potential to compli-
cate predictions of variability. Lower wind speeds overall
could reduce longer-term (monthly) variability of both wind
and phytoplankton, but more frequent storms may increase
the short-term (hourly and daily) variability of wind speed
and promote the development of algal blooms (Huber
et al. 2012) in this lake-rich region.

The positive relationship between variability in daily and
monthly algal biomass and the overall productivity of lakes
may implicate periodic algal blooms, which are more preva-
lent in eutrophic lakes, as one possible mechanism responsi-
ble for generating higher variability in productive systems
(Paerl and Paul 2012). Cyanobacterial blooms, in particular,
may be triggered during calm periods following extreme
weather events which can increase nutrient availability
through water column mixing, external loading, and resus-
pension of sediments (Reynolds et al. 1987; Wagner and
Adrian 2009; Huber et al. 2012). Our wind results support this
mechanism. Cloern and Jassby (2010) similarly found that
eutrophic lakes exhibit high variability at the submonthly
scale (the residual component in their study) and predicted
that the pattern was due to algal blooms. Their study, like
ours, also used methods that were robust to mean-variance
scaling suggesting the observed patterns were not artifacts.
Also noteworthy in a bloom context is the pronounced lack
of a linear fit to the relationship between monthly chlF VCs
and trophic status as the variance seems to plateau somewhere
between 10 μg L−1 and 20 μg L−1 Chl a, followed by a poten-
tial slight decline (Figs. 1, 4). This pattern suggests that there

may be a lake trophic threshold that, when passed, introduces
more consistent variability rather than the intermittent
blooms that likely characterize lakes approaching this
threshold.

Over the past century, algal blooms have increased in fre-
quency, duration, intensity, and regional distribution and are
predicted to increase further as the climate continues to warm
(Carey et al. 2012; Paerl and Paul 2012; Rigosi et al. 2015; Tar-
anu et al. 2015). Our results suggest that further increases in
nutrient availability and storminess may increase the spatial
and temporal variability of bloom events, which may be
increasingly dominated by cyanobacteria, at subseasonal
scales and reduce our ability to predict when freshwater eco-
system services are at risk (Watson et al. 2008; Brooks
et al. 2016). Our finding of equivalent fractions of algal varia-
tion occurring at monthly and submonthly timescales rein-
forces the need for collecting higher frequency measurements
similar to Thomas et al. (2018) who found an increase in pre-
dictability of mean biomass at shorter timescales (hourly to
monthly). Further, these findings highlight the potential for
using high-frequency time series of fluorescence as a “resil-
ience indicator” of impending regime shifts across a wide vari-
ety of lake types (Pace et al. 2017) and quantify the
magnitude of variation in algal biomass that is not currently
represented in traditional monitoring programs. By capturing
such data, at a temporal scale equivalent to the generation
times of phytoplankton, we can better address both the causes
and consequences of changes in algal biomass. Given the key
role of phytoplankton in aquatic food webs and ecosystem
function, these results also suggest that aquatic ecosystems
may become more unpredictable in the future, thus present-
ing a serious challenge to management and conservation in
an era of rapid environmental change.
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