451 research outputs found

    alpha-Amylase Production in Fed BatchCultivation of Bacillus caldolyticus: An Interpretation of FermentationCourseUsing 2-D Gel Electrophoresis

    Get PDF
    The conditions for increased production of thermostable a-amylase from Bacillus caldolyticus DSM 405 were investigated. Preliminary experiments in batch shake flasks led to an optimized initial cultivation medium. Shake flask experiments in extended-batch and in fed-batch mode of operation indicated that the a-amylase production was enhanced by continuous feeding of starch. The activity of the a-amylase with optimized initial medium in batch-operated shake flasks was 5.7 U mL–1 compared to 15.4U mL–1 in the extended-batch culture and 21 U mL–1 in fed-batch culture. The improvements were achieved by avoiding any excess of starch in medium that led to accumulation of glucose followed by acetate formation. Adding casitone as the second component of the feeding solution in an aerated and agitated fed-batch bioreactor (3-liter working volume) led to an increased -amylase activity of up to 163.7 U mL.–1 All phases of cultivation were analyzed using 2D-gel electrophoresis in combination with nano LC-ESI-MS/MS for identification of altered proteins. Pyruvate kinase, 6-phosphofructokinase, GltC, anti-sigma F factor, glycogen synthase and several important variable proteins were detected. With help of these results, potential improvements of a two-component feeding strategy are discussed

    On the importance of hydrodynamic interactions in polyelectrolyte electrophoresis

    Full text link
    The effect of hydrodynamic interactions on the free-solution electrophoresis of polyelectrolytes is investigated with coarse-grained molecular dynamics simulations. By comparing the results to simulations with switched-off hydrodynamic interactions, we demonstrate their importance in modelling the experimentally observed behaviour. In order to quantify the hydrodynamic interactions between the polyelectrolyte and the solution, we present a novel way to estimate its effective charge. We obtain an effective friction that is different from the hydrodynamic friction obtained from diffusion measurements. This effective friction is used to explain the constant electrophoretic mobility for longer chains. To further emphasize the importance of hydrodynamic interactions, we apply the model to end-labeled free-solution electrophoresis.Comment: 15 pages, 7 figures; accepted for publication in J. Phys.: Condens. Matte

    Splitting of Folded Strings in AdS_4*CP^3

    Full text link
    We study classically splitting of two kinds of folded string solutions in AdS_4*CP^3. Conserved charges of the produced fragments are computed for each case. We find interesting patterns among these conserved charges.Comment: minor changes, 14 pages, no figure

    Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    Get PDF
    Objective: Angiopoietin-like protein-4 (ANGPTL4) is a circulating protein that is highly expressed in liver and implicated in regulation of plasma triglyceride levels. Systemic ANGPTL4 increases during prolonged fasting and is suggested to be secreted from skeletal muscle following exercise. Methods: We investigated the origin of exercise-induced ANGPTL4 in humans by measuring the arterial-to-venous difference over the leg and the hepato-splanchnic bed during an acute bout of exercise. Furthermore, the impact of the glucagon-to-insulin ratio on plasma ANGPTL4 was studied in healthy individuals. The regulation of ANGPTL4 was investigated in both hepatic and muscle cells. Results: The hepato-splanchnic bed, but not the leg, contributed to exercise-induced plasma ANGPTL4. Further studies using hormone infusions revealed that the glucagon-to-insulin ratio is an important regulator of plasma ANGPTL4 as elevated glucagon in the absence of elevated insulin increased plasma ANGPTL4 in resting subjects, whereas infusion of somatostatin during exercise blunted the increase of both glucagon and ANGPTL4. Moreover, activation of the cAMP/PKA signaling cascade let to an increase in ANGPTL4 mRNA levels in hepatic cells, which was prevented by inhibition of PKA. In humans, muscle ANGPTL4 mRNA increased during fasting, with only a marginal further induction by exercise. In human muscle cells, no inhibitory effect of AMPK activation could be demonstrated on ANGPTL4 expression. Conclusions: The data suggest that exercise-induced ANGPTL4 is secreted from the liver and driven by a glucagon-cAMP-PKA pathway in humans. These findings link the liver, insulin/glucagon, and lipid metabolism together, which could implicate a role of ANGPTL4 in metabolic diseases

    Measuring 19F shift anisotropies and 1H–19F dipolar interactions with ultrafast MAS NMR

    Get PDF
    A new 19F anisotropic–isotropic shift correlation experiment is described that operates with ultrafast MAS, resulting in good resolution of isotropic 19F shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles that reintroduces the 19F chemical shift anisotropy in the indirect dimension. The situations in which the new experiment is appropriate are discussed, and the 19F shift anisotropy parameters in poly(difluoroethylene) (PVDF) are measured. In addition, similar recoupling sequences are shown to be effective for measuring 1H–19F distances via the heteronuclear dipolar interaction. This is demonstrated by application to a recently synthesized zirconium phosphonate material that contains one-dimensional chains linked by H–F hydrogen bonds

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Towards elucidating carnosic acid biosynthesis in Lamiaceae: Functional characterization of the three first steps of the pathway in Salvia fruticosa and Rosmarinus officinalis

    Get PDF
    Carnosic acid (CA) is a phenolic diterpene with anti-tumour, anti-diabetic, antibacterial and neuroprotective properties that is produced by a number of species from several genera of the Lamiaceae family, including Salvia fruticosa (Cretan sage) and Rosmarinus officinalis (Rosemary). To elucidate CA biosynthesis, glandular trichome transcriptome data of S. fruticosa were mined for terpene synthase genes. Two putative diterpene synthase genes, namely SfCPSand SfKSL, showing similarities to copalyl diphosphate synthase and kaurene synthase-like genes, respectively, were isolated and functionally characterized. Recombinant expression in Escherichia coli followed by in vitro enzyme activity assays confirmed that SfCPS is a copalyl diphosphate synthase. Coupling of SfCPS with SfKSL, both in vitro and in yeast, resulted in the synthesis miltiradiene, as confirmed by 1D and 2D NMR analyses (1H, 13C, DEPT, COSY H-H, HMQC and HMBC). Coupled transient in vivo assays of SfCPS and SfKSL in Nicotiana benthamiana further confirmed production of miltiradiene in planta. To elucidate the subsequent biosynthetic step, RNA-Seq data of S. fruticosa and R. officinalis were searched for cytochrome P450 (CYP) encoding genes potentially involved in the synthesis of the first phenolic compound in the CA pathway, ferruginol. Three candidate genes were selected, SfFS, RoFS1 and RoFS2. Using yeast and N. benthamiana expression systems, all three where confirmed to be coding for ferruginol synthases, thus revealing the enzymatic activities responsible for the first three steps leading to CA in two Lamiaceae genera

    Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis

    Get PDF
    Previous studies have evaluated how changes in atmospheric nitrogen (N) inputs and climate affect stream N concentrations and fluxes, but none have synthesized data from sites around the globe. We identified variables controlling stream inorganic N concentrations and fluxes, and how they have changed, by synthesizing 20 time series ranging from 5 to 51 years of data collected from forest and grassland dominated watersheds across Europe, North America, and East Asia and across four climate types (tropical, temperate, Mediterranean, and boreal) using the International Long-Term Ecological Research Network. We hypothesized that sites with greater atmospheric N deposition have greater stream N export rates, but that climate has taken a stronger role as atmospheric deposition declines in many regions of the globe. We found declining trends in bulk ammonium and nitrate deposition, especially in the longest time-series, with ammonium contributing relatively more to atmospheric N deposition over time. Among sites, there were statistically significant positive relationships between (1) annual rates of precipitation and stream ammonium and nitrate fluxes and (2) annual rates of atmospheric N inputs and stream nitrate concentrations and fluxes. There were no significant relationships between air temperature and stream N export. Our long-term data shows that although N deposition is declining over time, atmospheric N inputs and precipitation remain important predictors for inorganic N exported from forested and grassland watersheds. Overall, we also demonstrate that long-term monitoring provides understanding of ecosystems and biogeochemical cycling that would not be possible with short-term studies alone.publishedVersio
    • …
    corecore