26,223 research outputs found

    The equation of state at high temperatures from lattice QCD

    Get PDF
    We present results for the equation of state upto previously unreachable, high temperatures. Since the temperature range is quite large, a comparison with perturbation theory can be done directly.Comment: 7 pages, 5 figures, Lattice 200

    The nature of the finite temperature QCD transition as a function of the quark masses

    Get PDF
    The finite temperature QCD transition for physical quark masses is a crossover. For smaller quark masses a first-order phase transition is expected. Using Symanzik improved gauge and stout improved fermion action for 2+1 flavour staggered QCD we give estimates/bounds for the phase line separating the first-order region from the crossover one. The calculations are carried out on two different lattice spacings. Our conclusion for the critical mass is m0≲0.07⋅mphysm_0 \lesssim 0.07 \cdot m_{phys} for NT=4N_T=4 and m0≲0.12⋅mphysm_0 \lesssim 0.12 \cdot m_{phys} for NT=6N_T=6 lattices.Comment: Talk presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, Germany. 7 pages, 6 figure

    Freeze-out parameters: lattice meets experiment

    Get PDF
    We present our results for ratios of higher order fluctuations of electric charge as functions of the temperature. These results are obtained in a system of 2+1 quark flavors at physical quark masses and continuum extrapolated. We compare them to preliminary data on higher order moments of the net electric charge distribution from the STAR collaboration. This allows us to determine the freeze-out temperature and chemical potential from first principles. We also show continuum-extrapolated results for ratios of higher order fluctuations of baryon number. These will allow to test the consistency of the approach, by comparing them to the corresponding experimental data (once they become available) and thus extracting the freeze-out parameters in an independent way.Comment: 5 pages, 7 figures, revte

    Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency?

    Get PDF
    Recent results for moments of multiplicity distributions of net-protons and net-electric charge from the STAR collaboration are compared to lattice QCD results for higher order fluctuations of baryon number and electric charge by the Wuppertal-Budapest collaboration, with the purpose of extracting the freeze-out temperature and chemical potential. All lattice simulations are performed for a system of 2+1 dynamical quark flavors, at the physical mass for light and strange quarks; all results are continuum extrapolated. We show that it is possible to extract an upper value for the freeze-out temperature, as well as precise baryo-chemical potential values corresponding to the four highest collision energies of the experimental beam energy scan. Consistency between the freeze-out parameters obtained from baryon number and electric charge fluctuations is found. The freeze-out chemical potentials are now in agreement with the statistical hadronization model.Comment: 5 pages, 4 figures, references added, discussion added to the introduction, results unchange

    The curvature of the QCD phase transition line

    Get PDF
    We determine the curvature of the phase transition line in the mu-T plane through an analysis of various observables, including the Polyakov loop, the quark number susceptibilities and the susceptibility of the chiral condensate. The second derivative of these quantities with respect to mu was calculated. The measurements were carried out on N_T = 4,6,8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavour staggered fermion action using physical quark masses.Comment: Talk presented at the XXVI International Symposium on Lattice Field Theory, July 14 - 19, 2008, Williamsburg, Virginia, USA. 7 pages, 6 figure

    Lattice SU(3) thermodynamics and the onset of perturbative behaviour

    Get PDF
    We present the equation of state (pressure, trace anomaly, energy density and entropy density) of the SU(3) gauge theory from lattice field theory in an unprecedented precision and temperature range. We control both finite size and cut-off effects. The studied temperature window (0.7...1000Tc0.7... 1000 T_c) stretches from the glueball dominated system into the perturbative regime, which allows us to discuss the range of validity of these approaches. From the critical couplings on fine lattices we get T_c/\Lambdamsbar=1.26(7) and use this ratio to express the perturbative free energy in TcT_c units. We also determine the preferred renormalization scale of the Hard Thermal Loop scheme and we fit the unknown g6g^6 order perturbative coefficient at extreme high temperatures T>100TcT>100T_c. We furthermore quantify the nonperturbative contribution to the trace anomaly using two simple functional forms.Comment: 7 pages, Contribution to the The XXVIII International Symposium on Lattice Field Theory; June 14 - 19, 2010, Villasimius, Sardinia, Ital

    Drived diffusion of vector fields

    Get PDF
    A model for the diffusion of vector fields driven by external forces is proposed. Using the renormalization group and the ϵ\epsilon-expansion, the dynamical critical properties of the model with gaussian noise for dimensions below the critical dimension are investigated and new transport universality classes are obtained.Comment: 11 pages, title changed, anisotropic diffusion further discussed and emphasize

    Direct images of bundles under Frobenius morphisms

    Full text link
    Let XX be a smooth projective variety of dimension nn over an algebraically closed field kk with char(k)=p>0{\rm char}(k)=p>0 and F:X→X1F:X\to X_1 be the relative Frobenius morphism. For any vector bundle WW on XX, we prove that instability of F∗WF_*W is bounded by instability of W⊗Tℓ(ΩX1)W\otimes{\rm T}^{\ell}(\Omega^1_X) (0≤ℓ≤n(p−1)0\le \ell\le n(p-1))(Corollary \ref{cor3.8}). When XX is a smooth projective curve of genus g≥2g\ge 2, it implies F∗WF_*W being stable whenever WW is stable.Comment: the final version to appear in Invent. math. (2008

    Integral Constraints On cosmological Perturbations and their Energy

    Full text link
    We show the relation between Traschen's integral equations and the energy, and ``position of the centre of mass'', of the matter perturbations in a Robertson-Walker spacetime. When the perturbations are ``localised'' we get a set of integral constraints that includes hers. We illustrate them on a simple example.Comment: 19 pages, Tex file, submitted to Classical and Quantum Gravit
    • …
    corecore