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1. Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions. Due to one of its most
important properties, asymptotic freedom, at high temperatures it describes a different phase of
matter called quark-gluon plasma (QGP). The phase transition between the hadronic phase of mat-
ter and QGP can be investigated by lattice simulations. The transition at zero chemical potential –
which represents the case of equal number of quarks and antiquarks – is of huge importance, since
it is relevant for both regarding the early Universe and highenergy collisions.

The 2+1 flavour QCD transition was recently found to be an analytic crossover [1] (instead of
a first-order phase transition), which usually results in different transition temperatures for different
observables [2] and to a broadening of the equation of state around the transition temperature [3].
These works were carried out using physical quark masses; nevertheless different values of the
quark masses can also have relevance. For three massless quarks we expect from QCD effective
models, that a first-order phase transition takes place. Forinfinite quark masses (which describe
pure gauge theory) lattice results indicate that there is also a first-order transition. For two massless
flavours a second-order transition is expected. We can summarize our knowledge on figure 1.
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Figure 1: The phase diagram of QCD. First-order and crossover regionsare separated by second-order lines.
For the one pointed towards by the arrow we expect a Z(2) universality class. The exact position of the line
is to be determined.

There are second-order phase transition lines, that separate the first-order and crossover re-
gions. For the 2 flavour case, the universality class of the phase line is predicted to be O(4) [4],
while for the 2+1 case, we expect Z(2). However, the exact position of this latter phase line still
needs to be determined with adequate accuracy. In the work of[5] the phase line is found to be at
about 80% of the physical quark mass onNT = 4 lattices with the unimproved staggered action.
The same authors have presented theirNT = 6 study at the present conference [6]. Based on the re-
sults about the strength of the transition for different lattice spacings and/or discretization schemes,
one expects that reducing the discretization errors results in a weaker transition. In agreement with
this expectation they observed that the first-order region shrinks, and the physical point is farther
from the phase line.

The location of the second-order line has high importance, since combined with the curva-
ture of the phase surface (in them− µ space), it can influence the position [7, 8] (or even the
existence [5]) of the critical endpoint on the QCD phase diagram.
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In this paper we give estimates and upper bounds for the critical mass by means of analyzing
the behaviour of some quantities that are sensitive to the nature of the phase transition. These
quantities will be the susceptibility and the Binder cumulant of the chiral condensate. It will turn
out, that the latter is more trustworthy in locating the second-order line, nevertheless, we present
results here regarding both quantities.

2. Second-order behaviour

First we discuss what kind of behaviour we expect from the susceptibility and from the Binder
cumulant in the vicinity of a second-order line. Then we carry out lattice simulations for different
quark masses, and compare them with the expectations.

2.1 The chiral susceptibility

The susceptibility of the chiral condensate is defined asχψ̄ψ ≡ ∂ψ̄ψ
∂m . At the transition temper-

ature it is supposed to show a pronounced peak. Distinguishing between first-order, second-order
transitions and crossovers can be achieved by finite-size scaling of some properties of this peak.
Particularly, for second-order transitions, the height ofthe peak should diverge at the critical point.
We can observe this behaviour in a statistical physical approach. Our order parameter of the tran-
sition is the chiral condensatēψψ , the reduced temperature ist ≡ (T −TC)/TC, and the external
field, which breaks the symmetry is the quark massm. The definitions of the critical indicesε ,γ ,
andδ are:

ψ̄ψ ∼ |t|ε , χψ̄ψ ∼ |t|−γ , ψ̄ψδ |t=0 ∼ m (2.1)

Now let’s take the derivative of the last proportionality with respect tom, so the susceptibility
can be expressed as a function of the quark mass. This will determine how the height of the peak
grows while reducing the mass.

χψ̄ψ |t=0 ∼ m
1
δ −1 (2.2)

From the first and third proportionality in (2.1) we can also obtain how the critical temperature
depends on the quark mass:

|t| ∼ m
1

εδ (2.3)

It is worth mentioning that if we start from the second proportionality in (2.1) and from (2.2), then

we obtain|t| ∼ m
δ−1
γδ , which is identical to (2.3) (c.f. theγ = ε(δ −1) scaling rule).

In the following we will analyze the susceptibility peak as afunction ofβ ≡ 6/g2. Since we
restrict ourselves to the interval around the critical temperature, where the functionβ (T) can be
linearized, this means that in the above formulae we can substitute the reduced temperature with
(the reduced)β .

The critical exponents in question can be looked up in the literature for the interesting univer-
sality classes; these values are summarized in the next table [9]:

1/εδ 1/δ −1

3D Ising 0.633 -0.785
3D O(2) 0.598 -0.794
3D O(4) 0.537 -0.794
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2.2 The Binder cumulant

The cumulant is another useful quantity to distinguish between different types of phase transi-
tions. Roughly, it measures how much the distribution of theorder parameter is of Gaussian type.
Its definition for the chiral condensate is as follows:

Bψ̄ψ ≡ 〈(δψ̄ψ)4〉
〈(δψ̄ψ)2〉2 (2.4)

whereδ denotes the deviation from the average, soδψ̄ψ ≡ ψ̄ψ −〈ψ̄ψ〉. The actual value of the
cumulant can be easily calculated for different distributions. We should analyze the distribution of
ψ̄ψ in the infinite volume limit, at the critical temperature. For a first-order transition the distri-
bution consists of two Dirac-deltas, for whichBψ̄ψ = 1. For a crossover we have one Dirac-delta,
which is (through a series of finite volumes) approached by Gaussian functions getting narrower
and narrower. In this caseBψ̄ψ ≈ 3. For second-order transitions the value of the cumulant depends
on the universality class: for Z(2), that of the three-dimensional Ising-model,Bψ̄ψ = 1.604 [10];
for O(2),Bψ̄ψ = 1.242 [11]; while for O(4),Bψ̄ψ = 1.092 [9].

3. Results

Our results were obtained by lattice simulations with 2+1 flavours of staggered quarks. We
used Symanzik improved gauge and stout improved fermionic action; the details concerning the
action and the simulation techniques are described in [1, 2,3]. For smaller volumes (ranging from
103×4 to 163×4) up to 500-1000 configurations were generated. For larger volumes (up to 243×4
andNT = 6 simulations) we had smaller statistics, about a few hundred configurations. Autocorre-
lation time was measured to be around 5, so we used every fifth configuration for measurements.
Measurement of the chiral condensate was carried out with 60random vectors.

In order to approach the second-order line we had to carry outsimulations at very small quark
masses. There are, however, limitations that we have to takeinto account. First of all, smaller
masses increase CPU time by a factor of 1/m. Still very important is, that we have to keep the
lattice sizes much larger than the characteristic length ofthe system. This length is given by the
inverse of the pion mass:ℓψ̄ψ = 1/mπ ≈ 1/

√
m, so for smaller masses we also needed larger

lattices. Paying attention to these phenomena, we carried out simulations for quark masses ranging
from 200% down to 5% of their physical values.

3.1 The chiral susceptibility

For every quark mass we used, we had to search for the susceptibility peak on theχψ̄ψ − β
plane. These peaks are plotted on figure 2., for the case ofm/mphys= 0.4. . .2. The height of the
peak increases as smaller quark masses are used, which indicates the strengthening of the transition.

As shown by equations (2.2) and (2.3), the height and the position of the susceptibility peak
should follow a power-like behaviour, which has a singular point (non-analytical point for the case
of the position) at the critical mass of the second-order point, denoted in the following bym0.
The critical indeces for these power functions (as summarized in table 2.1.) are rather close to
each other, particularly for the case of the height. This means that it is very difficult to distinguish
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Figure 2: The susceptibility peaks for different quark masses. Apparently the transition gets stronger for
smaller masses, as it is shown by higher peaks.

between different universality classes from observing thebehaviour of these quantities. However,
if we suppose that that we are dealing with a given universality class (namely Z(2) for our case),
than we may keep the exponent of the power function fixed, and perform a fit for the critical mass.
These fits are shown on figure 3.

Figure 3: The position (left panel) and the height (middle panel forNT = 4, right panel forNT = 6) of the
susceptibility peak as a function of the quark mass. With solid lines shown are the power function fits, with
exponents fixed at values from different universality classes (which give the same for the height).

We performed these fits for different fit intervals. The results from the height of the peak can
be seen on figure 4. As we narrow the fit interval by excluding points with largest masses, the
estimate form0 reaches a nice plateu, which indicates that we are already inthe dominant region of
the second-order point at smaller masses. We can obtain an upper bound from this analysis, which
is m0 . 0.05·mphys. The same procedure was done also for the case of the positionof the peak, for
which the fits turned out to be less stable. Nevertheless fromthis latter we hadm0 . 0.12·mphys.

3.2 The Binder cumulant

We saw in section 2.2., that the values of the cumulant for thesecond-order cases and for
crossover are quite apart from each other, which makes it easier to have a more accurate estimate
for the critical mass. We measured the cumulant atTC, i.e. atβ corresponding to the position of
the peak, which almost always coincided with the minimum of the cumulant in that temperature
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Figure 4: The singular point of the power-function fitted to the heightof the peak, versus the upper bound
of the fit interval. As largest masses are excluded from the fit, we get deeper in the dominant region, where
the behaviour of the susceptibility is governed by the appropriate critical index.

interval. At larger masses the cumulant has a value consistent with the crossover behaviour, then
closer to the critical mass it starts to decrease, and at the point with smallest mass (m/mphys= 0.05
for NT = 4 and 0.1 for NT = 6) it already reaches the value which represents the Z(2) universality
class. So the behaviour of the cumulant is consistent with the assumption we posed about figure 1.
If we accept this scenario, than we can have an upper bound here again form0. These results are
shown on figure 5.

Figure 5: The value of the Binder cumulant atTC plotted against the quark mass for 163×4 (left), 243×4
(middle) and 183×6 (right). Behaviour at smaller masses indicate that the universality class of the second-
order point in question is consistent with Z(2). We have upper bounds form0 indicated by the blue lines.

From this analysis we can conclude for the critical mass thatm0/mphys. 0.07 forNT = 4, and
m0/mphys. 0.12 for NT = 6.

3.3 Summary

The behaviour of the Binder cumulant showed that the universality class of the second-order
line is consistent with Z(2). We also obtained upper bounds for the value of the critical mass from
the analysis of both the chiral susceptibility and the Binder cumulant. These estimates suggest
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strongly that the critical mass is below 7% of the physical quark mass onNT = 4 and 12% on
NT = 6 lattices. This means that the physical point is at least about ten times farther from the lower
left corner of the phase diagram, than the second-order phase line. So the first-order region on figure
1. is exaggarated, and looks rather like as depicted on figure6., which is our final conclusion.

Figure 6: The lower left part of the QCD phase diagram, as a conclusion of our work.
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