We present the equation of state (pressure, trace anomaly, energy density and
entropy density) of the SU(3) gauge theory from lattice field theory in an
unprecedented precision and temperature range. We control both finite size and
cut-off effects. The studied temperature window (0.7...1000Tc) stretches
from the glueball dominated system into the perturbative regime, which allows
us to discuss the range of validity of these approaches. From the critical
couplings on fine lattices we get T_c/\Lambdamsbar=1.26(7) and use this ratio
to express the perturbative free energy in Tc units. We also determine the
preferred renormalization scale of the Hard Thermal Loop scheme and we fit the
unknown g6 order perturbative coefficient at extreme high temperatures
T>100Tc. We furthermore quantify the nonperturbative contribution to the
trace anomaly using two simple functional forms.Comment: 7 pages, Contribution to the The XXVIII International Symposium on
Lattice Field Theory; June 14 - 19, 2010, Villasimius, Sardinia, Ital